• Title/Summary/Keyword: DOE

Search Result 934, Processing Time 0.036 seconds

Process Optimization Approached by Design of Experiment Method for Ga-doped ZnO Thin Films (DOE 법에 의한 Ga 첨가된 ZnO 박막의 공정조건 탐색)

  • Lee, Deuk-Hee;Kim, Sang-Sig;Lee, Sang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.108-112
    • /
    • 2010
  • Design of experiment (DOE) method is employed for a systematic and highly efficient optimization of Ga-doped ZnO thin films synthesized by pulsed laser deposition (PLD) process. We sequentially adopted fractional-factorial design (FD) and central composite design (CCD) of the DOE methods. In fractional-FD stage, significant factors to make conductive electrode are found to target-substrate (T-S) distance and oxygen partial pressure. Moreover, correlation among the process factors is elucidated using surface profile modeling. Electrical properties of the GZO films grown on a glass substrate had been optimized to find that the lowest electrical resistivity of about $1.8'10^{-4}Wcm$ which was acquired with the T-S distance and the oxygen pressure of 4 cm and 7 mTorr, respectively. During the DOE-fueled optimization process, the transparency of the GZO films is ensured higher than 85 %.

Best Practices in Electronic Government : Comprehensive Electronic Information Dissemination for Science and Technology (전자정부 모범사례 : 과학기술정보의 포괄적 전자 유통)

  • Noh, Kyung-Ran
    • Journal of Information Management
    • /
    • v.33 no.1
    • /
    • pp.81-95
    • /
    • 2002
  • The Department of Energy's (DOE) Scientific and Technical Information Program (STIP) has successfully reinvented the way in which DOE collects, organizes, archives, disseminates, and uses scientific and technical information in the performance of research and development (R&D). Through a suite of innovative Web-based products conceived and developed by the Department's Office of Scientific and Technical Information(OSTI), information and resources resulting from the Department's R&D activities, as well as worldwide information needed by the research community, are readily available to all users in a fully integrated E-Government environment. This suite of products is accessible publicly at .

Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

Comparison of Measurement Method of Hydrogen Permeability in Proton Exchange Membrane Fuel Cell (고분자전해질연료전지에서 수소투과도 측정법의 비교)

  • Oh, So-Hydong;Yun, Jeawon;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.507-511
    • /
    • 2019
  • Hydrogen permeability is widely used to evaluate the polymer membrane durability of polymer electrolyte fuel cells (PEMFC). Linear sweep voltammetry (LSV) is mainly used to measure hydrogen permeability easily. There are many differences in LSV measurement method among researchers, and it is often difficult to compare the results. Therefore, in this study, we tried to confirm the accuracy by comparing the hydrogen permeability of LSV method and gas chromatograph which is difficult to measure but accurate value. The LSV method used the DOE and NEDO methods. When the hydrogen permeability was measured by varying the temperature and the relative humidity, the DOE LSV method showed an accuracy of less than 5% in the error range compared with the GC method. In the NEDO LSV method, the error was reduced when the hydrogen permeation current density was determined at the current value of 0.3 V as the DOE method.

High-Quality Stereo Depth Map Generation Using Infrared Pattern Projection

  • Jeong, Jae-Chan;Shin, Hochul;Chang, Jiho;Lim, Eul-Gyun;Choi, Seung Min;Yoon, Kuk-Jin;Cho, Jae-Il
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1011-1020
    • /
    • 2013
  • In this paper, we present a method for obtaining a high-quality 3D depth. The advantages of active pattern projection and passive stereo matching are combined and a system is established. A diffractive optical element (DOE) is developed to project the active pattern. Cross guidance (CG) and auto guidance (AG) are proposed to perform the passive stereo matching in a stereo image in which a DOE pattern is projected. When obtaining the image, the CG emits a DOE pattern periodically and consecutively receives the original and pattern images. In addition, stereo matching is performed using these images. The AG projects the DOE pattern continuously. It conducts cost aggregation, and the image is restored through the process of removing the pattern from the pattern image. The ground truth is generated to estimate the optimal parameter among various stereo matching algorithms. Using the ground truth, the optimal parameter is estimated and the cost computation and aggregation algorithm are selected. The depth is calculated and bad-pixel errors make up 4.45% of the non-occlusion area.

Optimization of CMP Process parameter using DOE(Design of Experiment) Technique (DOE(Design of Experiment)기법을 통한 CMP 공정 변수의 최적화)

  • Lee, Kyoung-Jin;Park, Sung-Woo;Park, Chang-Jun;Kim, Ki-Wook;Jeong, So-Young;Kim, Chul-Bok;Choi, Woon-Shik;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.228-232
    • /
    • 2002
  • The rise throughput and the stability in the device fabrication can be obtained by applying chemical mechanical polishing(CMP) process in 0.18 ${\mu}m$ semiconductor device. However it does have various problems due to the CMP equipment. Especially, among the CMP components, process variables are very important parameters in determining removal rate and non-uniformity. In this paper, We studied the DOE(design of experiment) method for the optimized CMP process. Various process variations, such as table and head speed, slurry flow rate and down force, have investigated in the viewpoint of removal rate and non-uniformity. Through the above DOE results, we could set-up the optimal process parameters.

  • PDF

A Study on DOE Method to Optimize the Process Parameters for Cu CMP (구리 CMP 공정변수 최적화를 위한 실험계획법(DOE) 연구)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. Copper has been the candidate metallization material for ultra-large scale integrated circuits (ULSIs), owing to its excellent electro-migration resistance and low electrical resistance. However, it still has various problems in copper CMP process. Thus, it is important to understand the effect of the process variables such as turntable speed, head speed, down force and back pressure are very important parameters that must be carefully formulated in order to achieve desired the removal rates and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the main effect of the variables and the interaction between the various parameters during CMP. A better understanding of the interaction behavior between the various parameters and the effect on removal rate, non-uniformity and ETC (edge to center) is achieved by using the statistical analysis techniques. In the experimental tests, the optimum parameters which were derived from the statistical analysis could be found for higher removal rate and lower non-uniformity through the above DOE results.

Review of Confirmatoty Data Analysis and Exploratory Data Analysis in Statistical Quality Control, Design of Experiment and Reliability Engineering (SQC, DOE 및 RE에서 확증적 데이터 분석(CDA)과 탐색적 데이터 분석(EDA)의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.253-258
    • /
    • 2010
  • The paper reviews the methodologies of confirmatory data analysis(CDA) and exploratory data analysis(EDA) in statistical quality control(SQC), design of experiment(DOE) and reliability engineering(RE). The study discusses the properties of flexibility, openness, resistance and reexpression for EDA.

  • PDF