• Title/Summary/Keyword: DNPH 분석

Search Result 27, Processing Time 0.022 seconds

Comparison of recovery rates of DNPH-Cartridge sampler in the analysis of odorous carbonyl compounds (DNPH Cartridge를 이용한 악취성 카르보닐화합물의 분석회수율 비교)

  • Hong, One-Feel;Lim, Sung-Min;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.446-456
    • /
    • 2010
  • In this study, the performance characteristics of DNPH sampling were investigated in the collection and analysis of 5 carbonyl compounds (CC) in air using the cartridge products produced by three different makers. For these experiments, gaseous standards of 5 CCs were prepared to cover 9 concentration levels for each compound (33~2600 nmol). Some cartridge products exhibited relatively high blank values of acetaldehyde (AA) and propionaldehyde (PA). The recovery rates of all three cartridges showed moderate reduction as the molecular weight of CC increased. In addition, when the recovery rate was compared by percent error (%), the most stable patterns were achieved in the intermediate concentration range of 263~1312 nmol (in case of AA). The overall results of our study suggest that the optimal range of recovery for a given concentration range should be considered to obtain the most reliable data for the DNPH cartridge method.

The effect of relative humidity on the performance of DNPH-cartridge sampling for odorous aldehydes (악취성 Carbonyl 화합물의 카트리지 채취 분석: 습도가 채취효율에 미치는 영향)

  • Lee, Min-Hee;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.50-59
    • /
    • 2012
  • In this study, the effect of humidity change on DNPH cartridge sampling efficiency for carbonyl compounds (CCs) has been investigated. For this analysis, gaseous standard of 6 different CCs (formaldehyde (FA), acetaldehyde (AA), propionaldehyde (PA), butyraldehyde (BA), isovaleraldehyde (IA), and valeraldehyde (VA)) was calibrated after derivatization with three types of DNPH cartridge products. Their calibration results derived at RH values between 0 and 80% were then compared against liquid phase standards. If the results of our analysis are compared by the RH values between 20 and 80%, the effect of RH can be distinguished between light and heavy CCs. For lighter CCs (like FA and AA), there was no significant change. However, for the ones heavier than PA, there was fairly noticeable increase in relative recovery ratio in RH value between 20 and 80%. Such patterns are seen consistently from all three DNPH products tested for comparison. The results of our analysis suggest that proper correction for RH change may be needed for heavier CCs by the cartridge method.

Method comparison for analyzing formaldehyde in marker pen ink (마킹펜 잉크 내 폼알데하이드 분석법 비교)

  • Park, Kwang Seo;Kim, Yong Shin;Choe, Eun Kyung
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Marker pens belong to school things that are controlled by the regulation system called safety confirmation under special act on the safety of products for children with the formaldehyde criteria of 20 mg/kg. With nine marker pens available commercially, formaldehyde in marker pen ink was analyzed by present test standard where marking on a fabric swatch with a pen and extracting the swatch in water and derivatization with Nash reagent followed by UV/Vis spectrophotometeric measurement (Nash-UV/Vis method), giving not detected results or a false positive result in case of a colored water extract. However, the contents of formaldehyde in ink of nine marker pens were determinded to range between 3.2 ~ 93.2 mg/kg with three results above the safety criteria of 20 mg/kg by HPLC/DAD measurements on DNPH derivatives of formaldehyde (DNPH-HPLC/DAD method) in ink dissolved directly in water using an ultrasonic bath. Therefore, the DNPH-HPLC/DAD method with the extraction of ultrasonic dissolving ink in water is proposed as a proper method for analyzing formaldehyde in ink. The proposed method has advantages of lower detection limit and accuracy with colored extracts as well as a simple and fast extraction. The accuracy and precision of this method was estimated to be 90.1 ~ 105.4 % and 0.6 ~ 3.3 %, respectively by spiking tests in the ranges of 20 mg/kg and 40 mg/kg using matrixes such as highlighter pen ink, board marker ink, chalk marker pen ink and painter marker ink.

Comparison of ACFAS method and DNPH-LC method for quantitative analysis of formaldehyde in Drinking water (자동연속흐름-흡광광도법과 DNPH-LC법에 의한 먹는물 중 포름알데히드 정량분석 비교)

  • Yi, Geon-Ho;Yun, In-Chul;Kim, Yeong-Kwan;Kim, Chong-Chaul;Choi, Geum-Jong;Lee, Teak-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Due to the stringent drinking water quality, formaldehyde will be included in Korean drinking water standard from year 2014. However, its standard analytical method has not yet been established. This study compares two analytical methods, DNPH-LC and ACFAS with respect to their analysis principles, Method Detection Limit (MDL), Limit Of Quantitation(LOQ), precision, accuracy, reproducibility, convenience, number of samples analyzed per hour and analysis cost. These methods measure absorption intensity at 360 nm by using HPLC after DNPH-derivatization (DNPH-LC) and at 410 nm by using Automated Continuous Flow Absorption Spectrophotometer (ACFAS), respectively. Reproducibility was tested by repeating the analysis 7 times using a standard solution for each method. For DNPH-LC method, MDL was $0.5{\mu}g/L$, LOQ was $1.58{\mu}g/L$ with standard deviation of $0.16{\mu}g/L$. For ACFAS method, they were $0.27{\mu}g/L$, $0.85{\mu}g/L$L with standard deviation of $0.09{\mu}g/L$, respectively. Both methods satisfied the requirement set by the Korean drinking water quality standard. Complexity of sample pretreatment procedure for DNPH-LC method may cause large error and, consequently, the analytical result will depend on the level of skill of analyst. In contrast, ACFAS method which used only one reagent equipped with an automated injection device showed little analytical error. It costs about $5.00 and $1.00 for one sample to analyze by the DNPH-LC method and the ACFAS method, respectively. Compared to the DNPH-LC method, ACFAS method provided more reliable analytical results. In terms of convenience, easiness and analytical cost, ACFAS method was demonstrated to be superior to the DNPH-LC method. The results of this study suggested that the ACFAS method could be adapted as a proper method for determining formaldehyde content in drinking water.

Determination of Aldehydes in Tap Water by Reverse Phase Liquid Chromatography (역상 액체 크로마토그래피에 의한 수도수 중 알데하이드류의 정량)

  • Choi, Yong Wook;Choi, Yun Jung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.438-446
    • /
    • 1999
  • The optimum analytical method of aldehydes, ozone by-products, was established by reverse phase liquid chromatography. Six aldehydes including formaldehyde, acetaldehyde, acrolein, propionaldehyde, butylaldehyde and benzaldehyde, and one ketone including acetone were selected as aldehyde test samples through preliminary experiments. Such analytical conditions as the pH of citrate buffer solution, reaction temperature, reaction time, and concentration of DNPH, the component and composition of desorption solvent were optimized. As the result, pH 3.0 of citrate buffer solution, 40$^{\circ}C$ of reaction temperature, 15 minutes of reaction time, and 0.012% of DNPH concentration were chosen as optimum conditions. Aldehydes-DNPH derivatives in water were concentrated on $C_18$ Sep-Pak cartridge and followed by elution of their derivatives fraction with THF/ACN(70/30) mixture, and showed recoveries of the range from 87 to 107%. Separation condition on Nova-Pak $C_18$ column with low pressure gradient elution from ACN/MeOH/water(30/10/60) of an initial condition to 80% ACN of a final condition was found to give a good resolution within 20 minutes of run time. 86% to 103% of recovery for aldehydes using this method was similar to that for aldehyde using EPA Method 554 which is ranged from 84% to 103%.

  • PDF

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

Analysis of Carbonyl Compounds using DNPH Cartridge with LC-MS (DNPH cartridge/LC-MS 방법에 의한 카르보닐화합물 분석에 관한 연구)

  • Cho Deok-Hee;Song Il-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Several carbonyl compounds are important because of their irritant and toxic properties, mutagenicity and carcinogenicity. Therefore, they are regulated in korean odor emission standard. In this study, atmospheric pressure ionization-mass spectrometry(API-MS) is used for the analysis of carbonyl compounds after derivatization with 2, 4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the $[M-H]^-$ pseudomolecular ions are most abundant for the carbonyls. Analytical parameters such as linearity, repeatability and minimum detection limit were evaluated. The linearities ($r^2$) for carbonyls were $0.9977{\sim}0.9999$ when analyte concentration ranges from $25\;to\;250{\mu}g/L$(n=6). The relative standard deviations (%RSD) for carbonyls were $0.55{\sim}3.51%$ for concentration of $100{\mu}g/L$(n=5). The minimum detection limit (MDL) was $1.88{\mu}g/L$(0.27 ppb) for i-valeraldehyde. It was shown that LC-MS method has a great potential for carbonyl compounds analysis.

Characteristics of Formaldehyde Emission from Small Gasoline Engine and Its Reduction Technology (소형 가솔린엔진의 포름알데히드 배출특성 및 저감법에 관한 연구)

  • Choi, B.C.;Lee, N.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-25
    • /
    • 1999
  • Experiments were carried out to investigate the characteristics of formaldehyde emission from the small gasoline engine and its reduction technologies. Catalytic converters used are Pt/Rh, Pd/Rh, Pd/Pt, $62cell/cm^2$ monolith type. The measurement of formaldehyde was conducted by using the method of DNPH-GC. From the experimental results, formaldehyde emission increased in a lean mixture due to incomplete combustion of the hydrocarbons. The order of catalytic activity of formaldehyde oxidation was Pt/Rh > Pd/Rh > Pd/Pt. As the distance from the exhaust manifold to the inlet of the catalyst became far, in spite of lower catalyst temperature, formaldehyde concentration decreased because of the adsorption of formaldehyde.

  • PDF

Analytical method for analyzing formaldehyde using 2, 4-DNPH and gas chromatography/FID, NPD (2,4-DNPH와 가스크로마토그래프를 이용한 포름알데히드 분석방법)

  • Jeong, Jee Yeon;Park, Seung Hyun;Yi, Gwang Yong;Oh, Se Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.126-146
    • /
    • 2000
  • To develop and evaluate formaldehyde measurement method using 2,4-dinitro-phenylhydrazine (2,4-DNPH) coated sampler and gas chromatography, laboratory test and field test were conducted. Results of this study are as follows. Limit of detection(LOD) of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is $0.008{\mu}g/m{\ell}$ $0.060{\mu}g/m{\ell}$, $0.472{\mu}g/m{\ell}$ respectively. Coefficiency of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is 0.008, 0.009, 0.020 respectively. Desorption efficiency of sep-pak xposure aldehyde sampler and sorbent sample tube is 1.05(range : 0.99 - 1.12), 1.02(range : 0.99 - 1.06) respectively. Samples of sorbent sample tube and sep-pak xposure aldehyde sampler turned out to be stored at refrigerator, according to storage test results. Measurement methods of HPLC-UVD, GC-NPD, GC-FID, according to results of precision for the combined sampling and analytical procedure, became acceptable to OSHA evaluation standard. Field test using exposure chamber met the NIOSH overall uncertainty recommendation(less than 25%). Overall uncertainty of Sepak-HPLC(UVD), Tube-GC(NPD), Tube-GC(FID) is 11.0% - 17.0%. Consequently gas chromatography(GC-NPD, GC-FID) and high performance liquid chromatography(EPA TO-11) using 2,4-DNPH coated sampler for formaldehyde measurement turned out to be suitable to measure personal formaldehyde exposure at workplaces.

  • PDF