• 제목/요약/키워드: DNA-protein kinase

검색결과 300건 처리시간 0.039초

Quantification of Her-2/Neu Gene in Breast Cancer Patients using Real Time-Polymerase Chain Reaction (Q-PCR) and Correlation with Immunohistochemistry Findings

  • Abdul Murad, Nor Azian;Razak, Zuraini Abdul;Hussain, Rosniza Muhammmad;Syed Hussain, Sharifah Noor Akmal;Ching Huat, Clarence Ko;Siti Aishah, Che Md. Ali;Abdullah, Norlia;Muhammad, Rohaizak;Ibrahim, Naqiyah;Jamal, Rahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1655-1659
    • /
    • 2013
  • Background: HER-2/neu is a proto-oncogene that encodes a transmembrane tyrosine kinase growth factor which is crucial for stimulating growth and cellular motility. Overexpression of HER-2/neu is observed in 10-35% of human breast cancers and is associated with pathogenesis, prognosis as well as response to therapy. Given the imperative role of HER-2/neu overexpression in breast cancer, it is important to determine the magnitude of amplification which may facilitate a better prognosis as well as personalized therapy in affected patients. In this study, we determined HER-2/neu protein expression by immunohistochemistry (IHC) concurrently with HER-2/neu DNA amplification by quantitative real time-polymerase chain reaction (Q-PCR). Materials and Methods: A total of 53 paired tissue samples from breast cancer patients were frozen-sectioned to characterize the tumour and normal tissues. Only tissues with 80% tumour cells were used in this study. For confirmation, Q-PCR was used to determine the HER-2/neu DNA amplification. Results: We found 20/53 (37.7%) of the tumour tissues to be positive for HER-2/neu protein overexpression using IHC. Out of these twenty, only 9/53 (17%) cases were in agreement with the Q-PCR results. The concordance rate between IHC and Q-PCR was 79.3%. Approximately 20.7% of positive IHC cases showed no HER-2/neu gene amplification using Q-PCR. Conclusion: In conclusion, IHC can be used as an initial screening method for detection of the HER-2/neu protein overexpression. Techniques such as Q-PCR should be employed to verify the IHC results for uncertain cases as well as determination of HER-2/neu gene amplification.

전침이 자연살해세포 활성에 미치는 유전자 발현 profile에 대한 연구 (Genes profile related to modulation of natural killer cell activity induced by electroacupuncture)

  • 최기순;노삼웅;오상덕;배현수;안현종;하윤문;김강호;민병일
    • Journal of Acupuncture Research
    • /
    • 제19권6호
    • /
    • pp.111-124
    • /
    • 2002
  • A line of study reported that electroacupuncture(EA) modulate natural killer cell(NK Cell) activities. One report suggested that EA enhanced splenic interferon-gamma($IFN-{\gamma}$), interleukin-2(IL-2), and NK cell activity in Sprague-Dawley rats. Another study suggested that $IFN-{\gamma}$ mediates the up-regulation of NK cell activity, and endogenous ${\beta}$-endorphin secretion also play a role in the up-regulation of NK cell activity induced by EA stimulation. In order to better understand the molecular regulation underlying the activation of NK cell induced by EA, we have utilized cDNA microarray to elucidate how EA alters program of gene expression of spleen in rats. First, we divided three groups, group I was EA group treated with EA in restriction holder, group II was sham group with only holder stress, and last group III was control group with no treatment. We measured NK cell activity after EA stimulation three times for 2 days using $^{51}Cr$ release assay. Second, Biotin-labeled cDNA probes synthesized from EA group and sham group, were competitively hybridized to the microarray that contained variable genes. Such high-throughput screening has identified a number of EA-responsive gene candidates. Of these, we found that EA induced a subset of genes of genes that functionally could modulatory effects on NK cell activity. Genes(vascular cell adhesion molecule-1, protein-tyrosine kinase, CD94 mRNA) related to boost NK cell activity, were increased by EA And, genes(protein-tyrosine-phospatase mRNA, protein-tyrosine phosphatase(SHP-1) mRNA) related to inhibit NK cell activity, were decreased by EA. These EA-responsive genes may provide key insights from which to understand mechanisms of activation of NK cell induced by EA.

  • PDF

CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현 (Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells)

  • 김선환;권현조;고현송;송시헌;권기상;권오유;최승원
    • 생명과학회지
    • /
    • 제20권12호
    • /
    • pp.1820-1828
    • /
    • 2010
  • PC12 세포에서 $CoCl_2$에 의한 hypoxia 유도는 HIF1 alpha의 상승 발현으로 확인하였다. 이때 apoptosis의 유도는 genomic DNA의 fragmentation과 apoptotic body는 Hoechst 염색으로 확인되었고, ER luminal chaperone의 발현 및 ER stress signal에 관여하는 ER membrane kinase인 IRE1, PERK, ATF6의 발현도 확인되었다. 이들이 apoptosis로 연결되는 고리 역할을 하는 IRE1-XBP1 mRNA splicing, PERK-eIF2 alpha, ATF6 protein cleavage도 반응하는 것으로 확인되었다. 위의 결과는 신경세포의 hypoxia상태는 ER stress signal pathway를 거쳐서 apoptosis가 된다는 것을 증명한 것으로 신경세포의 hypoxia치료를 위한 기초 자료가 될 것으로 생각한다.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

국내 X-관련성 범저감마글로불린혈증 세가족에 대한 Bruton's Tyrosine Kinase 단백질 발현 및 유전자 변이 분석 (Characterization of Mutations in Bruton's Tyrosine Kinase(Btk) Gene from Unrelated 3 X-linked Agammaglobulinemia(XLA) Families in Korea)

  • 송창화;조은경;박정규;김정수;홍수종;이재호
    • Clinical and Experimental Pediatrics
    • /
    • 제45권3호
    • /
    • pp.302-310
    • /
    • 2002
  • 목 적: 본 연구에서는 임상적으로 XLA로 진단받고 현재 치료 중인 국내 환아 세가족의 네명의 환아와 모친 등을 대상으로 말초혈액 단핵구의 Btk 단백질 발현과 Btk 유전자 변이를 분석하고자 하였다. 방 법: 말초혈액 단핵구의 Btk 발현도를 항 Btk 항체를 이용한 유세포측정을 통해 분석하고 직접 염기서열 분석에 의해 Btk 유전자 변이를 분석하였다. 결 과 : 환아들의 B 림프구의 발현은 2.1% 미만으로 정상인에 비해 매우 저하되어 있었으며 유세포 측정에 의한 환아 단핵구 유래 Btk 단백질 발현도 1.0% 이하로 정상인에 비해 매우 감소되었다. 유전자 변이 분석 결과 XLA 가족 1과 3에서는 각각 intron 18과 intron 1의 짜집기 공여 위치 부위에서 1개의 점 돌연변이가 발견되었으며 cDNA상 짜집기 오류 현상을 야기하였다. 그리고 XLA 가족 2의 경우 exon 10을 포함하는 980 bp의 유전자 결손(intron 9+191T부터 intron 10-215C까지)이 발견되었으며 세계적으로 처음 보고되는 새로운 유전자 변이였다. 또한 가족 2의 경우 가족 중 환아에서 만 Btk 단백질 결핍 및 유전자 변이를 진단하여 국내 XLA의 환아 중 최초의 산발적인 발병 양상을 확인하였다. 결 론: 본 연구 결과를 종합해 볼 때 임상적으로 XLA로 진단된 환아와 가족에 대한 항 Btk 항체를 이용한 유세포측정 방법은 XLA 환아 및 보인자의 진단에 매우 유용한 방법으로 생각된다. 또한 분자유전학 기법을 이용하여 Btk의 noncoding region을 포함한 광범위한 유전자 영역의 염기서열 분석을 시행한 결과 새로운 1개의 유전자 결손 및 2개의 점돌연변이에 의한 짜집기 오류를 확인하여 XLA를 최종 확진할 수 있었다.

Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절 (Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity)

  • 최은경;장혜숙;이연희;박건구
    • Radiation Oncology Journal
    • /
    • 제17권4호
    • /
    • pp.299-306
    • /
    • 1999
  • 목 적 : Ataxia-Telangiectasia (AT) 증은 여러 가지 유전적 결함을 갖는 질병으로 방사선 민감도가 비정상적으로 상승되어 있는 것이 특징이다 AT 환자에서 공통적으로 존재하는 ATM 유전자는 현재까지 방사선 신호전달에 관여하는 것으로 알려진 Pl-3 kinase와 유사한 구조임이 알려져 ATM이 방사선 신호전달경로에 중요한 작용을 할 것으로 추정하게 되었다. 본 연구에서는 AT 세포와 정상세포에 PKCI를 과발현 시킴으로써 방사선 신호전달에 관여하는 PKC를 억제하여 이것이 방사선 민감도에 미치는 영향을 관찰하고, 방사선에 의해 유도되는 early response gene인 c-fos transcription의 차이를 측정하여 ATM과 PKCI에 의한 신호전달이 c-fos 유전자 전사에 미치는 영향을 분석하고자 하였다. 대상 및 방법 : PKCI expression vector를 작제한 후 정상세포인 LM217과 AT세포인 AT5BIVA에 transfection 시킨 후 plasmid의 genomic DNA에 결합된 것은 polymerase chain reaction (PCR) 방법으로 확인하였고 PKCI의 mRNA 발현 여부는 northern blotting으로 확인하였다. 방사선 민감도는 아포토시스로 측정하였으며 PKCI가 과발현된 각 세포주에 5 Gy의 방사선을 조사한 후 48시간에 세포를 모아 TUNEL방법으로 아포토시스 세포의 수를 측정하였다. c-fos 유전자의 전사는 reporter 유전자로 c-fos CAT plsmid를 $\beta$-gal expression vector와 같이 각 세포주에 transfection 시키고 36시간이 지난 후 CAT assay를 하여 activity를 측정하고 동시에 $\beta$-gal assay를 시행하여 transfection 효율을 보정해 주었다. PKCI, Ras의 영향을 보기 위하여는 PKCI, Ras expression vector와 c-fos CAT plasmid를 cotransfection하고 CAT activity로 측정 하였다. 결 과 : 이 실험의 결과 LM과 AT 세포에서 PKCI가 방사선 민감도에 미치는 영향과 c-fos 전사에 미치는 영향을 처음으로 보여주었다. PKCI의 과발현이 LM 세포에서는 방사선 민감도를 증가시켰지만 AT세포에서는 오히려 약간 감소시키는 작용을 나타내었다. c-fos 전사는 AT 세포에서 LM 세포에 비하여 70배 낮게 나타났는데 PKCI가 과발현 됨으로써 LM 에서는 c-fos의 전사가 감소되었지만 AT 세포에서는 영향이 없었다. Ras 단백으로 c-fos를 유도시키고 여기에 PKCI 발현 백터를 contransfection 하면 LM세포에서는 induction 이 감소되었지만 AT 세포에서는 영향이 없었다. 즉 LM과 AT 세포에서의 PKCI에 의한 반응의 차이는 Ras와 관련된 signal transduction pathway라는 것을 알 수 있었다. 결 론 : PKCI는 정상세포에서는 방사선에 의한 세포 손상을 증가시키지만 AT 세포에서는 별 영향을 보이지 않는 것을 알 수 있었으며, 두 세포간의 이러한 차이는 c-fos proto-oncogene의 전사차이로 설명할 수 있겠다. 이러한 차이가 AT 세포의 방사선 민감도의 한 원인일 것으로 생각된다.

  • PDF

윤폐산에 의한 폐암세포 증식억제기전에 관한 연구 (The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells)

  • 강윤경;박동일;이준혁;최영현
    • 동의생리병리학회지
    • /
    • 제16권4호
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Chk2 Regulates Cell Cycle Progression during Mouse Oocyte Maturation and Early Embryo Development

  • Dai, Xiao-Xin;Duan, Xing;Liu, Hong-Lin;Cui, Xiang-Shun;Kim, Nam-Hyung;Sun, Shao-Chen
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.126-132
    • /
    • 2014
  • As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein ${\gamma}$-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.

Suppression of Human Prostate Cancer Cell Growth by β-Lapachone via Down-regulation of pRB Phosphorylation and Induction of Cdk Inhibitor p21WAF1/CIP1

  • Choi, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.223-229
    • /
    • 2003
  • The product of a tree (Tabebuia avellanedae) from South America, $\beta$-lapachone, is known to exhibit various pharmacological properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells. We observed that the proliferation-inhibitory effect of $\beta$-lapachone was due to the induction of apoptosis, which was confirmed by observing the morphological changes and cleavage of the poly(ADP-ribose) polymerase protein. A DNA flow cytometric analysis also revealed that $\beta$-lapachone arrested the cell cycle progression at the G1 phase. The effects were associated with the down-regulation of the phosphorylation of the retinoblastoma protein (pRB) as well as the enhanced binding of pRB and the transcription factor E2F-1. Also, $\beta$-lapachone suppressed the cyclindependent kinases (Cdks) and cyclin E-associated kinase activity without changing their expressions. Furthermore, this compound induced the levels of the Cdk inhibitor $p21^{WAF1/CIP1}$ expression in a p53-independent manner, and the p21 proteins that were induced by $\beta$-lapachone were associated with Cdk2. $\beta$-lapachone also activated the reporter construct of a p21 promoter. Overall, our results demonstrate a combined mechanism that involves the inhibition of pRB phosphorylation and induction of p21 as targets for $\beta$-lapachone. This may explain some of its anticancer effects.