• Title/Summary/Keyword: DNA-dependent

Search Result 1,347, Processing Time 0.024 seconds

Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone (DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구)

  • Choi Da Yean;Lee Jae Il;Chung Hyun Sup;Seo Han Gyeol;Woo Hyun Joo;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.323-331
    • /
    • 2005
  • The objective of the present study was to investigate the effect of $\beta-lapachone$, a quinone obtained from the bark of the lapacho tree (Tabebuia avellanedae) in South America, on the cell growth of human hepatoma (HepG2) and bladder (T24) carcinoma cells. Exposure of cancer cells to $\beta-lapachone$ resulted in growth inhibition, morphological changes and apoptosis in a concentration-dependent manner, which could be proved by MTT assay and flow cytometry analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that $\beta-lapachone$ did not affect the levels of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAFl/CIPl) expression. However, the transcriptional factor Sp-l and proliferating cell nuclear antigen (PCNA) protein levels were significantly down-regulated by $\beta-lapachone$ in both cell lines. Moreover, $\beta-lapachone$ treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-l (TEP-l). Taken together, these findings suggest that $\beta-lapachone$-induced inhibition of human hepatoma and bladder carcinoma cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and provide important new insights into the additional mechanisms of the anti-cancer activity of $\beta-lapachone$.

The Effect of the Basic Fibroblast Growth Factor on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts (치주인대세포 및 치은섬유아세포의 DNA 합성능에 대한 b-Fibroblast growth factor의 영향)

  • Cho, Young-Joon;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.414-428
    • /
    • 1996
  • The use of basic fibroblast growth factor which function as potent biologic mediators regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of basic fibroblast growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'deoxy-uridine into DNA of the cells in a dose -dependent manner. The cells which were prepared were the primary cultured gingival fibroblasts and periodontal ligament cells from human the fourth or sixth subpassages were used in the experiments. The cells which were seeded DMEM contain 10% FBS. The added concentrations of basic fibroblast growth factor were 0.1, 1, 10, 50, $l00{\eta}g/ml$ and basic fibroblast growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10{\mu}l/200{\mu}l$ 5Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose dependently by basic fibroblast growth factor at 24 hours, 48 hours and 72 hours. The similar mitogenic effects were at the 24 and 48 hours of basic fibroblast growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells was increased dose dependently to $50{\eta}g/ml$ by basic fibroblast growth factor at 24, 48 and 72 hours, but the DNA synthetic activity decreased at $l00{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were at the 48 hours application of basic fibroblast growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 72 hours than at 24, 48 hours the application of basic fibroblast growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the basic fibroblast growth factor.In conclusion, basic fibroblast growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells (윤폐산에 의한 폐암세포 증식억제기전에 관한 연구)

  • Kang Yun-Keong;Park Dong Il;Lee Jun Hyuk;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

NF-${\kappa}B$ Dependent IL-8 Secretion from Lung Epithelial Cells Induced by Peripheral Blood Monocytes Phagocytosing Mycobacterium Tuberculosis (결핵균을 탐석한 말초혈액단핵구 배양상층액에 의해 유도되는 폐상피세포주에서의 NF-${\kappa}B$ 의존성 IL-8 분비기전)

  • Park, Jae-Seuk;Jee, Young-Koo;Choi, Eun-Kyong;Kim, Keun-Youl;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.4
    • /
    • pp.315-324
    • /
    • 2001
  • Background : IL-8 is a potent chemotactic cytokine that plays an important role in the host defense mechanism against M. tuberculosis by recruiting inflammatory cells to the site of the infection. Lung epithelial cells, as well as alveolar macrophages are known to produce IL-8 in response to M. tuberculosis. IL-8 gene expression is mainly regulated on the level of transcription by NF-${\kappa}B$. This study investigated whether or not A549 cells produce IL-8 in NF-${\kappa}B$ dependent mechanism in response to macrophages phagocytosing M. tuberculosis. Methods : Peripheral blood monocytes that were obtained from healthy donors were cultured for 24 h with M. tuberculosis and a conditioned medium(CoMTB) was obtained. As a negative control, the conditioned medium without M. tuberculosis (CoMCont) was used. A549 cells were stimulated with M. tuberculosis, CoMCont and CoMTB and the IL-8 concentration in the culture media was measured by ELISA. The CoMTB induced IL-8 mRNA expression in the A549 cells was evaluated using RT-PCR, and CoMTB induced $I{\kappa}B{\alpha}$ degradation was measured using western blot analysis. CoMTB induced nuclear translocation and DNA binding of NF-${\kappa}B$ was also examined using an electrophoretic mobility shift assay(EMSA), and the CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity was measured using a luciferase reporter gene assay. Results : CoMTB induced IL-8 production by A549 cells($46.8{\pm}4.8\;ng/ml$) was higher than with direct stimulation with M. tuberculosis ($6.8{\pm}2.9\;ng/ml$). CoMTB induced IL-8 mRNA expression increased after 2 h of stimulation and was sustained for 24 h. $I{\kappa}B{\alpha}$ was degraded after 10 min of CoMTB stimulation and reappeared by 60 min. CoMTB stimulated the nuclear translocation and DNA binding of NF-${\kappa}B$. The CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity($13.6{\pm}4.3$ times control) was higher than either CoMCont($2.0{\pm}0.6$ times control) or M. tuberculosis ($1.4{\pm}0.6$ times control). Conclusion : A conditioned medium of peripheral blood monocytes phagocytosing M. tuberculosis stimulates NF-${\kappa}B$ dependent IL-8 production by the lung epithelial cells.

  • PDF

Activation of apoptotic protein in U937 cells by a component of turmeric oil

  • Lee, Yong-Kyu
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.96-100
    • /
    • 2009
  • Aromatic (ar)-turmerone from turmeric oil displays anti-tumorigenesis activity that includes inhibited cell proliferation. This study investigated ar-turmerone-mediated apoptotic protein activation in human lymphoma U937 cells. Ar-turmerone treatment inhibited U937 cell viability in a concentration-dependent fashion, with inhibition exceeding 84%. Moreover, the treatment produced nucleosomal DNA fragmentation and the percentage of sub-diploid cells increased in a concentration-dependent manner; both are hallmarks of apoptosis. The apoptotic effect of ar-turmerone was associated with the induction of Bax and p53 proteins, rather than Bcl-2 and p21. Activation of mitochondrial cytochrome c and caspase-3 demonstrated that the activation of caspases accompanied the apoptotic effect of ar-turmerone, which mediated cell death. These results suggest that the apoptotic effect of ar-turmerone on U937 cells may involve caspase-3 activation through the induction of Bax and p53, rather than Bcl-2 and p21.

Apoptosis-inducing Effect of Herba Patriniae Extract in the Prostate Cancer LNCaP Cells (전립선 암세포에서 패장 추출물의 세포고사 유도 효과)

  • Moon Hyung Cheal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.863-867
    • /
    • 2004
  • Herba Patriniae(HP) has been known to exert anti-inflammation and -tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that HP extract induced apoptosis in androgen-dependent prostate cancer LNCaP cells as evidenced by DNA fragmentation. Our data demonstrated that HP extract-induced apoptotic cell death was accompanied by inhibition of NF- κB activation, lowering effects of intracellular prostate specific antigen(PSA) and androgen reoeptor(AR) expression in a time dependent manner. Taken together, HP extract may inhibit the proliferation of prostate cancer LNCaP cell associated with inhibition of NF- κB activation, PSA and AR expression and that of apoptosis.

Activation of Dihaloalkanes by Thiol-dependent Mechanisms

  • Guengerich, F. Peter
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • Dihaloalkanes constitute an important group of chemicals because of their widespread use in industry and agriculture and their potential for causing toxicity and cancer. Chronic toxic effects are considered to depend upon bioactivation, either by oxidation or thiol conjugation. Considerable evidence links genotoxicity and cancer with glutathione conjugations reactions, and some aspects of the mechanisms have been clarified with 1,2-dihaloalkanes and dihalomethanes. Recently the DNA repair protein $O^6$-alkylguanine transferase has been shown to produce cytotoxicity and genotoxicity by mans of a thiol-dependent process with similarities to the glutathione reactions.

Cell Cycle and Cancer

  • Park, Moon-Taek;Lee, Su-Jae
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highly-ordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators of accelerators that induce cell cycle progression; whereas, cyclin-dependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression of activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how cancer treatment strategies can be designed.

Atromentin-Induced Apoptosis in Human Leukemia U937 Cells

  • Kim, Jin-Hee;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.946-950
    • /
    • 2009
  • In the course of screening for apoptotic substances that induce apoptosis in human leukemia U937 cells, a fungal strain, F000487, which exhibits potent inducible activity, was selected. The active compound was purified from an ethyl acetate extract of the microorganism by Sep-pak $C_{18}$ column chromatography and HPLC, and was identified as atromentin by spectroscopic methods. This compound induced caspase-3 processing in human leukemia U937 cells. The caspase-3 and poly (ADP-ribose) polymerase (PARP) were induced by atromentin in a dose-dependent manner. Furthermore, DNA fragmentation was also induced by this compound in a dose-dependent manner. These results show that atromentin potently induces apoptosis in U937 cells and that atromentin-induced apoptosis is related to the selective activation of caspases.

Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

  • Lee, Su Jeong;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.209-214
    • /
    • 2014
  • Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic $NADP^+$-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.