• 제목/요약/키워드: DNA-based Identification

검색결과 624건 처리시간 0.024초

유전자 분석 기반 수입산 형태 변이 반하 유통 사례 보고 (A Case Report of Imports Morphological Variation of Pinelliae Tuber Based on the Genetic Analysis)

  • 김욱진;최고야;노수민;문병철
    • 대한본초학회지
    • /
    • 제37권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Objectives : The purpose of this study is to report that applying the genetic discrimination method to Pinelliae Tuber is suitable as a countermeasure for the limitations of morphological identification announced publicly in the Ministry of Food and Drug Safety(MFDS). Methods : Randomly selected fifty samples in Pinelliae Tuber imported from China were used for morphological and genetic identification. The morphological identification was applied method announced publicly by the MFDS. The traits of morphological identification were classified as Pinellia ternata, P. tripartita, Pinellia pedatisecta, and Typhonium flagelliforme, according to the formation of tuberous root and tuber morphology. The genetic identifications were conducted by Sequence Characterized Amplified Region(SCAR) marker and DNA barcoding analysis for cross-validation, respectively. SCAR marker was verified according to the presence or absence of amplicon through PCR amplification using species-specific primers. DNA barcoding analysis used sequence information of the matK region. Results : As a result of the morphological identification, 27 out of 50 samples were identified as original species 'P. ternata' of genuine 'Pinelliae Tuber', and 23 were identified as adulterant species 'P. pedatisecta'. Unlike this, the genetic identification was identified as the original species 'P. ternata' in all 50 samples in the SCAR marker and matK regional sequence analysis. Conclusions : Pinelliae Tuber of morphological mutant that can not be classified by morphological identification is imported from China. The SCAR marker would be used as accurate and efficient assays for species identification of the morphological mutant.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Development of Strain-specific PCR Primers Based on a DNA Probe Fu12 for the Identification of Fusobacterium nucleatum subsp. nucleatum ATCC $25586^T$

  • Kim Hwa-Sook;Song Soo Keun;Yoo So Young;Jin Dong Chun;Shin Hwan Seon;Lim Chae Kwang;Kim Myong Soo;Kim Jin-Soo;Choe Son-Jin;Kook Joong-Ki
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.331-336
    • /
    • 2005
  • The objective of this study was to assess the strain-specificity of a DNA probe, Fu12, for Fusobacterium nucleatum subsp. nucleatum ATCC $25586^T$ (F. nucleatum ATCC $25586^T$), and to develop sets of strain-specific polymerase chain reaction (PCR) primers. Strain-specificity was tested against 16 strains of F. nucleatum and 3 strains of distinct Fusobacterium species. Southern blot hybridization revealed that the Fu12 reacted exclusively with the HindIII-digested genomic DNA of F. nucleatum ATCC $25586^T$. The results of PCR revealed that three pairs of PCR primers, based on the nucleotide sequence of Fu12, generated the strain-specific amplicons from F. nucleatum ATCC $25586^T$. These results suggest that the DNA probe Fu12 and the three pairs of PCR primers could be useful in the identification of F. nucleatum ATCC $25586^T$, especially with regard to the determination of the authenticity of the strain.

DNA 표지를 이용한 딸기 국내 육성 품종 판별 (Identification of Korean Strawberry Cultivars using DNA markers)

  • 조강희;노일래;조용섭;박부희
    • 한국육종학회지
    • /
    • 제40권4호
    • /
    • pp.401-407
    • /
    • 2008
  • 딸기 국내 육성 신품종을 정확히 판별할 수 있는 DNA표지를 개발하고자 실험을 수행하였다. 딸기 유전정보를 이용하여 품종 판별이 가능한 CAPS 표지 15종을 개발하였고, 그 중에서 6종은 품종 특이적인 표지였다. CAPS 표지 중에서 ANR-MspI, ANR-BamHI, ACO-HinfI, DFR-AseI, FGT-MspI의 최소 5종의 표지를 이용하여 '매향'과 '선홍'을 제외한 국내 육성 품종 판별이 가능하였다. 15종의 CAPS 표지를 보완하기 위해 SRAP 분석을 통해 품종 간 다형성을 나타내는 15종의 표지를 선발하였고, 그 중에서 me1/em5-460bp 표지를 이용하여 '매향'과 '선홍'의 구별이 가능하였다. 따라서 5종의 CAPS 표지와 1종의 SRAP 표지를 이용하여 19종의 국내 육종 품종과 일본 품종의 판별이 가능하였으며, 금후 이 연구결과는 딸기 국내 육성 품종 식별을 위해 효과적으로 이용될 수 있을 것으로 판단되었다.

Thermoluminescence, DNA Comet 및 DEFT/APC 분석에 의한 방사선처리 건고추의 저장 중 검지 특성 (Identification Characteristics of Irradiated Dried Red Pepper during Storage by Analysis of Thermoluminescence, DNA Comet, and DEFT/APC)

  • 김병근;권중호
    • 한국식품과학회지
    • /
    • 제36권6호
    • /
    • pp.851-856
    • /
    • 2004
  • 통고추의 열발광 특성(TL)분석에서 2.5 kGy 이상의 조사 시료에서 분리된 미네랄 시료는 $150^{\circ}C$ 부근에서 TL glow curve ($TL_1$)를 나타내었고, 조사선량이 증가할수록 peak intensity가 증가하였다. 재조사(1 kGy) 방법에 의한 TL ratio($TL_1/TL_2$)는 TL 분석의 신뢰도를 높여주었다. DNA comet assay에서 비조사 시료(씨)는 전형적인 intact cell을 나타내었으나 감마선 조사 시료에서는 long tail을 가진 comet을 나타내면서 선량 의존적으로 tail length가 증가되었다. 미생물학적 방법으로써 DEFT/APC값 측정에서는 조사선량에 따라 분말고추와 통고추에서 비교적 높은 상관을 보였다. 이상의 결과에서 DNA comet assay와 DEFT/APC 방법은 방사선 조사 건고추의 screening 방법으로서, TL은 확인방법으로서 적용가능성이 확인되었다.

Capillary Gel Electrophoretic Analysis of Cattle Breeds Based on Difference of DNA Mobility of Microsatellite Markers

  • Lee, Mi-Ji;Yoon, Du-Hak;Jeon, Jin-Tae;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2655-2660
    • /
    • 2009
  • A breed of cattle, i.e., Korean cattle (Hanwoo), was identified based on the DNA mobilities of their microsatellites (MSs) by capillary gel electrophoresis (CGE) with a laser-induced fluorescence (LIF) detector. The MS markers were used for the accurate identification of species-specific genes. The DNA mobilities of the MS markers of Hanwoo and Holstein were measured using a CGE system with a fused-silica capillary (inner diameter of 75 ${\mu}m$, outer diameter of 365 ${\mu}m$, and total length of 50 cm). The capillary was dynamically coated with 1.0% (w/v) polyvinylpyrrolidone ($M_r$ = 1,000,000) and then filled with a mixture of 1.3% (w/v) poly(ethylene oxide) ($M_r$ = 600,000) and 1.9% (w/v) poly(ethylene oxide) (Mr = 8,000,000) as a sieving gel matrix. The species-specific genes of Hanwoo and Holstein were clearly distinguished within 33 min. This CGE assay technique is expected to be a useful analytical method for the fast and accurate identification of breeds of cattle.

DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링 (Wavelet-Based Fuzzy Modeling Using a DNA Coding Method)

  • 이연우;유진영;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2040-2042
    • /
    • 2003
  • In this paper, we propose a new method about wavelet-based fuzzy modeling using a DNA coding method. DNA coding techniques is known that expression of knowledge is various than Genetic Algorithm(GA) usually by made optimization technique because done base in structure of biologic DNA and optimization performance is superior. The reposed method make fuzzy system model in wavelet transform and equivalence relation after identification with coefficient of wavelet transform using a DNA coding techniques. Also, can get fuzzy model effectively of nonlinear system using advantage of strong wavelet transform about function that have sudden change. In this paper, in order to demonstrate the superiority of the proposed method compared with GA.

  • PDF

Body fluid identification in forensics

  • An, Ja-Hyun;Shin, Kyoung-Jin;Yang, Woo-Ick;Lee, Hwan-Young
    • BMB Reports
    • /
    • 제45권10호
    • /
    • pp.545-553
    • /
    • 2012
  • Determination of the type and origin of the body fluids found at a crime scene can give important insights into crime scene reconstruction by supporting a link between sample donors and actual criminal acts. For more than a century, numerous types of body fluid identification methods have been developed, such as chemical tests, immunological tests, protein catalytic activity tests, spectroscopic methods and microscopy. However, these conventional body fluid identification methods are mostly presumptive, and are carried out for only one body fluid at a time. Therefore, the use of a molecular genetics-based approach using RNA profiling or DNA methylation detection has been recently proposed to supplant conventional body fluid identification methods. Several RNA markers and tDMRs (tissue-specific differentially methylated regions) which are specific to forensically relevant body fluids have been identified, and their specificities and sensitivities have been tested using various samples. In this review, we provide an overview of the present knowledge and the most recent developments in forensic body fluid identification and discuss its possible practical application to forensic casework.

소, 돼지, 가금육류의 신속한 동정을 위한 TaqMan probe를 이용한 real-time PCR 개발 (Development of TaqMan probe-based real-time PCR for rapid identification of beef, pork and poultry meat)

  • 고바라다;김지연;나호명;박성도;김용환
    • 한국동물위생학회지
    • /
    • 제35권3호
    • /
    • pp.215-222
    • /
    • 2012
  • Species-specific $TaqMan^{(R)}$ probe-based real-time PCR assays were developed for detection of beef, pork, chicken, duck, goose and turkey. The primer and probe sets used in this study were designed to be complementary to fibroblast growth factor (FGF) for cattle and pig, mitochondrial NADH dehydrogenase (ND) subunit 3 and ND2 for chicken and duck, 12S rRNA for goose and turkey, respectively. As internal positive control we used conserved region in the ribosomal 18S RNA gene to ensure the accuracy of the detection of target DNA by real-time PCR. We confirmed that real-time PCR assays with the primer and probe sets were positive for cattle, pig and chicken intended target animal species with no cross-reactivity with other non-target animal species. Only >50 ng DNA of beef show cross-reactivity in the determination of duck. Using species-specific primer and probe sets, it was possible to detect amounts of 0.1 ng DNA of cattle and pig, 1.0 pg DNA of chicken, duck and turkey, and 0.1 pg DNA of goose for raw samples, respectively. The detection limits were 0.1 ng DNA of cattle, 1.0 ng DNA of pig and 1.0 pg DNA of chicken for DNA mixtures (beef, pork and chicken) extracted from heat-treated ($121^{\circ}C$/5 min) meat samples. In conclusion, it can be suggested that the $TaqMan^{(R)}$ probe-based assay developed in this study might be a rapid and specific method for the identification of meat species in raw or cooked meat products.

Rapid and Unequivocal Identification Method for Event-specific Detection of Transgene Zygosity in Genetically Modified Chili Pepper

  • Kang, Seung-Won;Lee, Chul-Hee;Seo, Sang-Gyu;Han, Bal-Kum;Choi, Hyung-Seok;Kim, Sun-Hyung;Harn, Chee-Hark;Lee, Gung-Pyo
    • 원예과학기술지
    • /
    • 제29권2호
    • /
    • pp.123-129
    • /
    • 2011
  • To identify unintended vertical gene-transfer rates from the developed transgenic plants, rapid and unequivocal techniques are needed to identify event-specific markers based on flanking sequences around the transgene and to distinguish zygosity such as homo- and hetero-zygosity. To facilitate evaluation of zygosity, a polymerase chain reaction technique was used to analyze a transgenic pepper line B20 (homozygote), P915 wild type (null zygote), and their F1 hybrids, which were used as transgene contaminated plants. First, we sequenced the 3'-flanking region of the T-DNA (1,277 bp) in the transgenic pepper event B20. Based on sequence information for the 3'- and 5'-flanking region of T-DNA provided in a previous study, a primer pair was designed to amplify full length T-DNA in B20. We successfully amplified the full length T-DNA containing 986 bp from the flanking regions of B20. In addition, a 1,040 bp PCR product, which was where the T-DNA was inserted, was amplified from P915. Finally, both full length T-DNA and the 1,040 bp fragment were simultaneously amplified in the F1 hybrids; P915 ${\times}$ B20, Pungchon ${\times}$ B20, Gumtap ${\times}$ B20. In the present study, we were able to identify zygosity among homozygous transgenic event B20, its wild type P915, and hemizygous F1 hybrids. Therefore, this novel zygosity identification technique, which is based on PCR, can be effectively used to examine gene flow for transgenic pepper event B20.