• Title/Summary/Keyword: DNA taxonomy

Search Result 288, Processing Time 0.024 seconds

Sea, wind, or bird: Origin of Fagus multinervis (Fagaceae) inferred from chloroplast DNA sequences (엽록체 염기서열을 통한 너도밤나무(너도밤나무과)의 기원 추론)

  • Oh, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • To elucidate the origin and patterns of establishment of insular plants on Ulleungdo Island, maternally inherited chloroplast DNA, which is useful for tracing seed movements, was used. Fagus multinervis, an endemic species that dominated broadleaf deciduous forests on Ulleungdo Island, is an excellent model for such a study. To understand the diversity and spatial distribution of the chloroplast haplotypes of F. multinervis, nucleotide sequences of the psbA-trnH region were determined from 144 individuals sampled throughout the island. Results of a phylogenetic analysis of the region with close relatives of F. multinervis suggest that F. multinervis is sister to a clade of F. japonica and F. engleriana. No haplotype variation was found within F. multinervis. This remarkably low cpDNA haplotype diversity is in contrast to the findings of previous allozyme studies of F. multinervis populations that showed high genetic diversity on Ulleungdo Island. Repeated colonization during the early stage of establishment via birds that migrated from a source area where the F. multinervis cpDNA haplotype was geographically structured may have resulted in the observed pattern of haplotype diversity. Alternatively, long-distance dispersal of seeds of the progenitor of F. multinervis via birds or typhoons to Ulleungdo may have been a single event, whereas the immigration of pollen from the mainland likely occurred frequently. Comparative phylogeographic studies of other species endemic to Ulleungdo Island and their close relatives on the neighboring mainland are necessary for a more complete understanding of the evolution of the island's native species.

A systematic study of Glechoma L. (Lamiaceae) based on micromorphological characters and nuclear ribosomal ITS sequences (미세구조학적 형질 및 핵 리보솜 DNA의 ITS 염기서열에 의한 긴병꽃풀속(꿀풀과)의 계통분류학적 연구)

  • Jang, Tae-Soo;Lee, Joongku;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.1
    • /
    • pp.22-32
    • /
    • 2014
  • The petal and sepal micromorphology of five species of Glechoma (Lamiaceae) was investigated to evaluate their taxonomic significance, and a molecular phylogeny using the sequences of internal transcribed spacers (ITS) regions of nuclear ribosomal DNA was carried out to resolve their phylogenetic relationships. Stomatal complexes were mostly found in the inner and outer part of the sepal from all investigated taxa, and the size length of the guard cell was variable among the taxa. Five types of trichomes (uni-cellular non-glandular trichome, multi-cellular non-glandular trichome, short-stalked capitate glandular trichome, long-stalked capitate glandular trichome, and peltate glandular trichome) were variable among the taxa as well as their distribution and density. In molecular phylogenetic studies, the genus Glechoma was composed of three geographically distinct major monophyletic groups (Europe-U.S.A., China-Korea, Japan). G. longituba in Korea and China formed well-supported monophyletic group. G. hederacea in Europe and U.S.A. formed a monophyletic and well-supported clade with G. sardoa, which are endemic species in Italy, with G. hirsuta falling as a sister to this clade. However, G. grandis did not form any phylogenetic relationships with the remaining taxa. The ITS analyses provided taxonomic boundaries of taxa in Glechoma although the petal and sepal micromorphological characters provided weak evidences of the systematic value. As further studies, incorporating more DNA regions to the matrix including other additional morphological analysis will be significant to provide clearer taxonomic structure in Glechoma.

Application and Utilization of Environmental DNA Technology for Biodiversity in Water Ecosystems (수생태계 생물다양성 연구를 위한 환경유전자(environmental DNA) 기술의 적용과 활용)

  • Kwak, Ihn-Sil;Park, Young-Seuk;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.151-155
    • /
    • 2021
  • The application of environmental DNA in the domestic ecosystem is also accelerating, but the processing and analysis of the produced data is limited, and doubts are raised about the reliability of the analyzed and produced biological taxa identification data, and the sample medium (target sample, water, air, sediment, Gastric contents, feces, etc.) and quantification and improvement of analysis methods are also needed. Therefore, in order to secure the reliability and accuracy of biodiversity research using the environmental DNA of the domestic ecosystem, it is a process of actively using the database accumulated through ecological taxonomy and undergoing verification procedures, and experts verifying the resolution of the data increased by gene sequence analysis. This is absolutely necessary. Environmental DNA research cannot be solved only by applying molecular biology technology, and interdisciplinary research cooperation such as ecology-taxa identification-genetics-informatics is important to secure the reliability of the produced data, and researchers dealing with various media can approach it together. It is an area in desperate need of an information sharing platform that can do this, and the speed of development will proceed rapidly, and the accumulated data is expected to grow as big data within a few years.

Phylogenetic Analysis of Genus Sporobolomyces Based on Partial Sequences of 26S rDNA

  • Hong, Soon-Gyu;Chun, Jong-Sik;Nam, Jin-Sik;Park, Yoon-Dong;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.363-366
    • /
    • 2000
  • The sequences of the D1/D2 region of 26S rDNA from seven Sporobolomyces species, Bensingtonia subrosea, and Rhodosporicium toruloides were determined and compared with those from representatives of the genera Leucosporidium, Rhodosporidium, Rhodotorula, and Sporidiobolus. The five species of Sporobolomyces analyzed were distantly related to a monophyletic clade consisting of species of Sporidiobolaceae and Sporobolomycetaceae. Sporobolomyces falcatus was found to be closely related to Tremella exigua. The members of Sporidiobolaceae and Sporobolomycetaceae were divided into four groups. Group 1 was composed of Leucosporidium scottii and two Rhodotorula species, and group 2 contained three Rhodotorula species. Group 3 was designeate as the Sporobolomyces/Sporidiobolus core group, as it contained Sporidiobolus johnsonii, the type species of Sporidiobolus and the teleomorphic state of Sporobolomyces salmonicolor (the type species of Sporobolomyces). Group 4, named the Rhodotorula/Rhodosporidium core group, included Rhodosporidium toruloides and Rhodotorula glutinis, the type species of the genera Fhodosporidium and Rhodotorula, respectively. The four groups were differentiated on the basis of their physiological characteristics including the assimilation of D-glucosamine, glucuronate, 2-keto-gluconate, L-arabinitol, raffinose, methyl-$\alpha$-glucoside, and satrch. The taxonomy of the genera Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces will require a major revision when more data becomes available.

  • PDF

Taxonomic position and genetic differentiation of Korean Astragalus mongholicus Bunge (한국산 황기의 분류학적 위치 및 유전적 분화)

  • Choi, In-Su;Kim, So-Young;Choi, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.1
    • /
    • pp.12-21
    • /
    • 2013
  • To clarify the taxonomic position for Astragalus nakaianus and provide correct scientific name for A. mongholicus cultivar in South Korea, we examined external morphological characters and sequence variations from ITS and five cp non-coding DNA regions. Genetic structure was also analyzed for 61 individuals from three populations using nine microsatellite loci. We found no significant difference between the South Korean cultivar and A. mongholicus var. dahuricus when morphology and ITS sequences were considered. Morphologically, A. nakaianus specimens varied somewhat from A. mongholicus var. mongholicus and var. dahuricus in habit, plant height, and lengths of leaf axis and leaflet. Although sequence data from ITS and cp noncoding DNA regions could not distinguished A. nakaianus from A. mongholicus, microsatellite analysis revealed strong structuring between the cultivar and A. nakaianus. Therefore, we conclude that the South Korean A. mongholicus cultivar should be treated as A. mongholicus var. dahuricus and that A. nakaianus should be merged into A. mongholicus as a variety, i.e., A. mongholicus var. nakaianus.

Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters

  • Lee, Sung Yeon;Jeong, Hae Jin;You, Ji Hyun;Kim, So Jin
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.21-35
    • /
    • 2018
  • The phototrophic dinoflagellate genus Scrippsiella is known to have a worldwide distribution. Here, we report for the first time, the occurrence of Scrippsiella lachrymosa in Korean waters. Unlike the other stains of S. lachrymosa whose cultures had been established from cysts in the sediments, the clonal culture of the Korean strain of S. lachrymosa was established from motile cells. When the sulcal plates of S. lachrymosa, which have not been fully described to date, were carefully examined using scanning electron microscopy, the Korean strain of S. lachrymosa clearly exhibited the anterior sulcal plate (s.a.), right sulcal plate (s.d.), left sulcal plate (s.s.), median sulcal plate (s.m.), and posterior sulcal plate (s.p.). When properly aligned, the large subunit (LSU) rDNA sequence of the Korean strain of S. lachrymosa was ca. 1% different from those of two Norwegian strains of S. lachrymosa, the only strains for which LSU sequences have been reported. The internal transcribed spacer (ITS) rDNA sequence of the Korean strain of S. lachrymosa was also ca. 1% different from those of the Scottish and Chinese strains and 3% different from those of the Canadian, German, Greek, and Portuguese strains. Thus, the Korean S. lachrymosa strain has unique LSU and ITS sequences. The abundances of S. lachrymosa in the waters of 28 stations, located in the East, West, and South Sea of Korea, were quantified in four seasons from January 2016 to October 2017, using quantitative real-time polymerase chain reaction method and newly designed specific primer-probe sets. Its abundances were >$0.1cells\;mL^{-1}$ at eight stations in January and March 2016 and March 2017, and its highest abundance in Korean waters was $26cells\;mL^{-1}$. Thus, S. lachrymosa has a nationwide distribution in Korean waters as motile cells.

Sphingopyxis panaciterrae sp. nov., Isolated from Soil of Ginseng Field

  • Lee, Hae-Won;Ten, Irina L.;Jung, Hae-Min;Liu, Qing-Mei;Im, Wan-Taek;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1011-1015
    • /
    • 2008
  • A Gram-negative, strictly aerobic, motile bacterial strain, designated Gsoil $124^T$, was isolated from a soil sample taken from a ginseng field in Pocheon Province (South Korea). The isolate contained Q-10 as the predominant lipoquinone, plus $C_{18:1}\;{\omega}7c$ and summed feature 4 ($C_{16:1}\;{\omega}6c$ and/or iso-$C_{15:0}$ 2-OH) as the major fatty acids. The G+C content of the genomic DNA was 68.1 mol%, and the major polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine. A comparative 16S rRNA gene sequence analysis showed that strain Gsoil $124^T$ was most closely related to Sphingopyxis chilensis (98.7%), Sphingopyxis alaskensis (98.2%), Sphingopyxis witflariensis (98.2%), Sphingopyxis taejonensis (98.0%), and Sphingopyxis macrogoltabida (97.6%). However, the DNA-DNA relatedness between strain Gsoil $124^T$ and its phylogenetically closest neighbors was less than 22%. Thus, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $124^T$ should be classified as representing a novel species in the genus Sphingopyxis, for which the name Sphingopyxis panaciterrae sp. nov. is proposed. The type strain is Gsoil $124^T$ (=KCTC $12580^T$=LMG $24003^T$).

Acinetobacter antiviralis sp. nov., from Tobacco Plant Roots

  • Lee, Jung-Sook;Lee, Keun-Chul;Kim, Kwang-Kyu;Hwang, In-Cheon;Jang, Cheol;Kim, Nam-Gyu;Yeo, Woon-Hyung;Kim, Beom-Seok;Yu, Yong-Man;Ahn, Jong-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Acinetobacter strain $KNF2022^T$ was isolated from tobacco plant roots during the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) and examined by phenotypic, chemotaxonomic, and genetic characterization. It was a nonmotile, Gram-negative bacterium. This strain contained Q-9 as the main respiratory quinone. The major cellular fatty acids of the isolate were 16:0, 18:1 w9c, and 16:1 w7c/15 iso 2OH. The DNA base composition was 44 mol%. Phylogenetic analysis based on the 16S rRNA sequence revealed that the isolate formed an evolutionary lineage distinct from other Acinetobacter species. Based on the evaluation of morphologic, physiologic, and chemotaxonomic characteristics, DNA-DNA hybridization values, and 16S rRNA sequence comparison, we propose the new species Acinetobacter antiviralis sp. nov., the type strain of which is $KNF2022^T$ (=KCTC $0699BP^T$).

Paenibacillus donghaensis sp. nov., a Xylan-degrading and Nitrogen-fixing Bacterium Isolated from East Sea Sediment

  • Choi, Jeong-Hwa;Im, Wan-Taek;Yoo, Jae-Soo;Lee, Sang-Mahn;Moon, Deok-Soo;Kim, Hyeon-Ju;Rhee, Sung-Keun;Roh, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.189-193
    • /
    • 2008
  • A Gram-positive and endospore-forming strain, $JH8^T$, was isolated from deep-sea sediment and identified as a member of the genus Paenibacillus on the basis of 16S rRNA gene sequence and phenotypic analyses. According to a phylogenetic analysis, the most closely related species was Paenibacillus wynnii LMG $22176^T$ (96.9%). Strain $JH8^T$ was also facultatively anaerobic and grew optimally at $20-25^{\circ}C$. The major cellular fatty acid was anteiso-$C_{15:0}$, and the DNA G+C content was 53.1mol%. The DNA-DNA relatedness between the isolate and Paenibacillus wynnii LMG $22176^T$ was 7.6%, indicating that strain $JH8^T$ and P. wynnii belong to different species. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain $JH8^T$ would appear to belong to a novel species, for which the name Paenibacillus donghaensis sp. novo is proposed (type strain=KCTC $13049^T=LMG\;237S0^T$).

Taxonomic status of three taxa of Elsholtzia (E. hallasanensis, E. springia, and E. splendens var. fasciflora) (Lamiaceae) based on molecular data

  • Lee, Chang Shook;Hwang, Kung Ae;Kim, Jin Ok;Suh, Hyoung Min;Lee, Nam Sook
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • Elsholtzia hallasanensis, E. springia, and E. splendens var. fasciflora (Lamiaceae) were reported recently as new species or new varieties of E. splendens according to their morphological characteristics. To reappraise the taxonomic status of these additional taxa and to determine the relationships between all Korean Elsholtzia taxa except E. saxatilis, which is distributed in North Korea, molecular studies based on the nrDNA (ITS) and cpDNA (rpl16, and trnH-psbA) sequences of seven taxa of Elsholtzia and one outgroup were carried out. The molecular data support that E. angustifolia and E. minima are distinct species from E. splendens and E. ciliata, respectively, because they have several private marker genes and show monophyly. The molecular data also support that E. splendens has a very close taxonomic relationship with both E. hallasanensis and E. springia. We found that E. splendens var. fasciflora, with multiple inflorescence, was based on several private marker genes and on the monophyly of its trees, suggesting that it can be considered as a variety. Elsholtzia springia, with the same sequences and the same morphological characteristics with E. hallasanensis after transplanting, should be treated as a synonym of E. hallasanensis. Moreover, we consider the taxonomic status of E. hallasanensis as E. splendens var. hallasanensis (Y. Lee) N.S. Lee & C.S. Lee, stat. nov.