• Title/Summary/Keyword: DNA strand breaks

Search Result 137, Processing Time 0.027 seconds

DNA Repair Synthesis Induced by Bleomycin in HeLa $S_3$ Cells Pretreated with Base Analogs (鹽基相似體를 前處理한 HeLa $S_3$ 細胞에 있어 Bleomycin에 의한 DNA 回復合成)

  • Um, Kyung-Il;Park, Sang-Dai
    • The Korean Journal of Zoology
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 1977
  • Dose response of DNA repair synthesis induced by bleomycin was dose-dependent in lower doses, and maximum rate of it at 5 $\\mu$g/ml represents about 15% of total cells analyzed. At higher doses DNA-repair synthesis was reduced and the rate of it remained unchanged even prolonged treatment. Pretreatment with BUdR or IUdR was found to enhance DNA repair synthesis and also to interfere with semiconservative DNA synthesis at higher doses. Time dependence study showed that DNA repair synthesis occurred as long as for 24 hours after removal of bleomycin. These results seem to suggest that bleomycin is not to be an effective chemical in inducing excision repair and that damages induced in DNA by this drug might include not only strand breaks but other types of DNA damage.

  • PDF

Post-Translational Regulation of the RSF1 Chromatin Remodeler under DNA Damage

  • Min, Sunwoo;Choi, Yong Won;Yun, Hansol;Jo, Sujin;Ji, Jae-Hoon;Cho, Hyeseong
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2018
  • Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.

The Effects of Antioxidant Vitamins Via Comet and Mitogenic Assay in Mice Exposed to $AFB_1$ ($AFB_1$에 노출된 마우스에서 Comet Assay와 Mitogenic Assay에 의한 항산화 비타민의 효과)

  • Park, Seon-Ja
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.21-33
    • /
    • 2001
  • The objective of this study was to examine the effects of antioxidant vitamins on the cellular oxidant damage by observing the mitogenicity in the mouse spleen and the strand breaks of DNA in mouse blood induced by $AFB_2$. Intraperitoneal(i.p.) injections of vitamin C(VC) of 10 mg/kg and vitamin E(VE) of 63.8 mg/kg were repeatedly administered to male ICR mice of 6 weeks old at intervals of 4 times every 2 days. After one hour vitamin treatments, $AFB_1$ of 0.4 mg/kg was injected into the $AFB_2$ plus vitamin treated groups in the same way. On the other hands, into the $AFB_2$ only treated group, only $AFB_2$ was injected without vitamins in the same method as above. The results of the experiment are as follows ; as regard to comet assay, DNA strand breaks were clearly present and they formatted a typical comet tail in the mice blood of the $AFB_2$ only treated groups. However, comet tails apparently disappeared in $AFB_2$ plus antioxidant vitamins treated groups since oxidant damage was controlled in an almost similar level to the control group. Mitogenicity of the spleen also showed a similar tendency as before, and these differences were more remarkably observed in the reaction against Con-A, which is a T-cell mitogen. In these data, the statistical significance was p<0.01. The LDL and VLDL levels were 408.72, 504.47 mg/dl respectively in the $AFB_2$ only treated groups. Compared with the $AFB_1$ only treated groups, those of $AFB_2$ plus antioxidant vitamin treated groups decreased to 272.06(VC), 305.28 mg/dl(VE), respectively. On the other hand, HDL levels were diminished to 32.60, 29.60 mg/dl in $AFB_2$ only treated groups, compared to 42.23, 41.14 mg/dl in the $AFB_2$ plus antioxidant vitamins treated groups. But, blood glucose levels were not statistically significant.

  • PDF

Dissociation of Thymine by Low-Energy Electrons

  • Cho, Hyuck;Noh, Hyung-Ah
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.11-15
    • /
    • 2020
  • Background: There have been various studies to investigate the mechanisms of DNA damage from low-energy electrons. To understand the mechanism of these strand breaks, it is necessary to investigate the dissociation mechanism of the DNA constituents, that is, bases, sugars, and phosphates. Materials and Methods: We studied the dissociation of thymine base upon interaction with low-energy electrons. For this experiment, thymine powder was pressed onto the indium base and irradiated by 5 eV electrons. Results and Discussion: Non-irradiated and irradiated thymine samples were compared and analyzed using the X-ray photoelectron spectroscopic technique to analyze the dissociation patterns of the molecular bonds after low-energy electron irradiation of thymine. Conclusion: With 5 eV electron irradiation, C-C and N-C = O bonds are the primary dissociations that occur in thymine molecules.

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells

  • Song, Eun Jeong;Kim, Nam Yee;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.171-178
    • /
    • 2017
  • This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.

Mitotic Cohesin Subunit Mcd1 Regulates the Progression of Meiotic Recombination in Budding Yeast

  • Lee, Min-Su;Yoon, Sang-Wook;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.598-605
    • /
    • 2015
  • The cohesin complex holds sister chromatids together and prevents premature chromosome segregation until the onset of anaphase. Mcd1 (also known as Scc1), the α-kleisin subunit of cohesin, is a key regulatory subunit of the mitotic cohesin complex and is required for maintaining sister chromatid cohesion, chromosome organization, and DNA repair. We investigated the function of Mcd1 in meiosis by ectopically expressing Mcd1 during early meiotic prophase I in Saccharomyces cerevisiae. Mcd1 partially regulated the progression of meiotic recombination, sister chromatid separation, and nuclear division. DNA physical analysis during meiotic recombination showed that Mcd1 induced double-strand breaks (DSBs) but negatively regulated homologous recombination during DSB repair; Mcd1 expression delayed post-DSB stages, leading to inefficiencies in the DSB-to-joint molecule (JM) transition and subsequent crossover formation. These findings indicate that meiotic cells undergo Mcd1-mediated DSB formation during prophase I, and that residual Mcd1 could regulate the progression of JM formation during meiotic recombination.

Tungtungmadic Acid, a Novel Antioxidant, from Salicornia her-bacea

  • Chung Young-Chul;Chun Hyo-Kon;Yang Jae-Young;Kim Ji-Young;Han Eun-Hee;Kho Yung-Hee;Jeong Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1122-1126
    • /
    • 2005
  • Tungtungmadic acid (3-caffeoyl-4-dihydrocaffeoyl quinic acid) is a new chlorogenic acid derivative that was isolated from the Salicomia herbacea. The structure of tungtungmadic acid was determined using chemical and spectral analysis. The antioxidant activity of tungtungmadic acid was evaluated using various antioxidant assays, including free radical scavenging, lipid peroxidation and hydroxyl radical-induced DNA strand breaks assays. Tungtungmadic acid ($IC_{50}\;=\;5.1\;{\mu}M\;and\;9.3\;{\mu}M$) was found to have higher antioxidant activity in the DPPH scavenging assay as well as in the iron-induced liver microsomal lipid peroxidation system. In addition, the tungtungmadic acid was also effective in protecting the plasmid DNA against strand breakage induced by hydroxyl radicals.

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool;Lee, Jung-Hwa;Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.432-438
    • /
    • 2007
  • V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.