• Title/Summary/Keyword: DNA storage

Search Result 184, Processing Time 0.025 seconds

DNA Information Hiding Method for DNA Data Storage (DNA 데이터 저장을 위한 DNA 정보 은닉 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.118-127
    • /
    • 2014
  • DNA data storage refers to any technique for storing massive digital data in base sequence of DNA and has been recognized as the future storage medium recently. This paper presents an information hiding method for DNA data storage that the massive data is hidden in non-coding strand based on DNA steganography. Our method maps the encrypted data to the data base sequence using the numerical mapping table and then hides it in the non-coding strand using the key that consists of the seed and sector length. Therefore, our method can preserve the protein, extract the hidden data without the knowledge of host DNA sequence, and detect the position of mutation error. Experimental results verify that our method has more high data capacity than conventional methods and also detects the positions of mutation errors by the parity bases.

Development of the Method Allowing DNA Size Markers to be Ambient Storage with Lyophilized Type (상온보관이 가능한 건조체 명태의 DNA size marker)

  • 전복환;강성원;서정원;이규식;조유진;박종구
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.106-109
    • /
    • 2002
  • Gel electrophoresis of DNA is a well known technique in molecular biology. This technique is simple, rapid to perform, and capable of adequately separating fragments of DNA. A number of mixtures of DNA fragments ("DNA size markers") are frequently employed in a purpose of extrapolating the sizes or the amount of DNA molecules during gel electrophoresis. DNA size markers are constructed by digesting plasmid DNA, bacteriophage DNA, or recombinant DNA molecules with one or more restriction enzymes. However, liquid suspension containing DNA size marker needs to be kept at a low temperature during storage and shipping. In an attempt to maintain the DNA samples at room temperature for extended period of time, lyophilization of DNA with addition of nuclease inhibitor was studied. Gel loading buffer was also added to the lyophilized DNA to provide additional convenience such that DNA size marker was the "ready-to-use" followed by simply reconstituting with distilled water.

Oxidative Stress in Spermatozoa during Boar Semen Storage (돼지 정액을 저장하는 동안 정자에 미치는 산화스트레스)

  • Seunghyung Lee
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.586-592
    • /
    • 2023
  • Oxidative stress is a critical factor affecting the quality and viability of sperm during boar semen storage. Oxidative stress is also a significant concern during the process of freezing semen. The process of semen storage involves exposing the sperm to various stressors, including temperature changes, cryoprotectants, and extended periods of incubation. In addition, oxidative stress can lead to the production of reactive oxygen species (ROS) within the sperm, resulting in oxidative damage to cellular components, such as lipids, proteins, and DNA. Striking a balance between ROS production and the antioxidant defense system is crucial for maintaining sperm viability and functionality during semen storage. Moreover, the prolonged storage of boar semen leads to an increase in ROS levels, which can impair sperm motility, membrane integrity, and DNA integrity. ROS-induced lipid peroxidation affects the fluidity and stability of sperm membranes, leading to decreased sperm motility. Moreover, oxidative damage to the DNA can result in DNA fragmentation, compromising the genetic integrity of the sperm. In conclusion, oxidative stress is a significant challenge in maintaining sperm quality during boar semen storage. Understanding the mechanisms underlying oxidative stress and their impacts on sperm function is crucial for developing effective strategies to minimize oxidative damage and improve sperm storage outcomes.

DNA Based Cloud Storage Security Framework Using Fuzzy Decision Making Technique

  • Majumdar, Abhishek;Biswas, Arpita;Baishnab, Krishna Lal;Sood, Sandeep K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3794-3820
    • /
    • 2019
  • In recent years, a cloud environment with the ability to detect illegal behaviours along with a secured data storage capability is much needed. This study presents a cloud storage framework, wherein a 128-bit encryption key has been generated by combining deoxyribonucleic acid (DNA) cryptography and the Hill Cipher algorithm to make the framework unbreakable and ensure a better and secured distributed cloud storage environment. Moreover, the study proposes a DNA-based encryption technique, followed by a 256-bit secure socket layer (SSL) to secure data storage. The 256-bit SSL provides secured connections during data transmission. The data herein are classified based on different qualitative security parameters obtained using a specialized fuzzy-based classification technique. The model also has an additional advantage of being able to decide on selecting suitable storage servers from an existing pool of storage servers. A fuzzy-based technique for order of preference by similarity to ideal solution (TOPSIS) multi-criteria decision-making (MCDM) model has been employed for this, which can decide on the set of suitable storage servers on which the data must be stored and results in a reduction in execution time by keeping up the level of security to an improved grade.

A Pattern Matching Extended Compression Algorithm for DNA Sequences

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.196-202
    • /
    • 2021
  • DNA sequencing provides fundamental data in genomics, bioinformatics, biology and many other research areas. With the emergent evolution in DNA sequencing technology, a massive amount of genomic data is produced every day, mainly DNA sequences, craving for more storage and bandwidth. Unfortunately, managing, analyzing and specifically storing these large amounts of data become a major scientific challenge for bioinformatics. Those large volumes of data also require a fast transmission, effective storage, superior functionality and provision of quick access to any record. Data storage costs have a considerable proportion of total cost in the formation and analysis of DNA sequences. In particular, there is a need of highly control of disk storage capacity of DNA sequences but the standard compression techniques unsuccessful to compress these sequences. Several specialized techniques were introduced for this purpose. Therefore, to overcome all these above challenges, lossless compression techniques have become necessary. In this paper, it is described a new DNA compression mechanism of pattern matching extended Compression algorithm that read the input sequence as segments and find the matching pattern and store it in a permanent or temporary table based on number of bases. The remaining unmatched sequence is been converted into the binary form and then it is been grouped into binary bits i.e. of seven bits and gain these bits are been converted into an ASCII form. Finally, the proposed algorithm dynamically calculates the compression ratio. Thus the results show that pattern matching extended Compression algorithm outperforms cutting-edge compressors and proves its efficiency in terms of compression ratio regardless of the file size of the data.

Storing Digital Information in Long-Read DNA

  • Ahn, TaeJin;Ban, Hamin;Park, Hyunsoo
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.30.1-30.6
    • /
    • 2018
  • There is urgent need for effective and cost-efficient data storage, as the worldwide requirement for data storage is rapidly growing. DNA has introduced a new tool for storing digital information. Recent studies have successfully stored digital information, such as text and gif animation. Previous studies tackled technical hurdles due to errors from DNA synthesis and sequencing. Studies also have focused on a strategy that makes use of 100-150-bp read sizes in both synthesis and sequencing. In this paper, we a suggest novel data encoding/decoding scheme that makes use of long-read DNA (~1,000 bp). This enables accurate recovery of stored digital information with a smaller number of reads than the previous approach. Also, this approach reduces sequencing time.

Changes of DNA Fragmentation by Irradiation Doses and Storage in Gamma-irradiated Potato, Garlic and Ginger (감마선 조사된 감자, 마늘, 생강에서 조사선량과 저장기간에 따른 DNA fragmentation의 변화)

  • Lee, Hye-Jin;Park, Yoo-Kyoung;Yang, Jae-Seung;Kang, Myung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • The changes in DNA damage were investigated during storage after irradiation. Potato, garlic were irradiated at 0.05, 0.07, 0.1 and 0.15 kGy and stored for 3 months. Ginger was irradiated at 0.01, 0.02, 0.03, 0.04 and 0.05 kGy and stored for 1 month. The comet assay was applied to the sample immediately after irradiation and at the end of storage. Samples were isolated, grounded and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 1 min. and then stained. DNA fragmentation in seeds caused by irradiation was quantified as tail length and tail moment (tail length ${\times}%$ DNA in tail) by comet image analyzing system. Right after irradiation, the differences in tail length between unirradiated and irradiated samples were significant(p<0.05) in potato, garlic and ginger. With increasing the irradiation doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. The results represented as tail moment showed similar tendency to those of tail length. Similarly in the stored samples, even 1 or 3 months after irradiation, all the irradiated samples significantly showed longer tail length than the unirradiated controls. These results indicate that the comet assay could be one of the simple methods of detecting irradiated samples. Moreover, the method could detect DNA damage even after 1 or 3 months after irradiation.

The Effects of Storage of Human Saliva on DNA Isolation and Stability (인체타액의 보관이 DNA 분리와 안정도에 미치는 영향)

  • Kim, Yong-Woo;Kim, Young-Ku
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of micromethodologies and increasing availability of immunological and molecular biological reagents. The technological advances led to consider the diagnostic use of saliva for an array of analytes and DNA source. The purpose of the present study was to compare DNA from saliva with those from blood and buccal swab, to evaluate diagnostic and forensic application of saliva, to investigate the changes of genomic DNA in saliva according to the storage temperature and period of saliva samples, and to evaluate the integrity of the DNA from saliva stored under various storage conditions by PCR analysis. Peripheral venous blood, unstimulated whole saliva, stimulated whole saliva, and buccal swab were obtained from healthy 10 subjects (mean age: $29.9{\pm}9.8$ years) and genomic DNA was extracted using commercial kit. For the study of effects of various storage conditions on genomic DNA from saliva, stimulated whole saliva were obtained from healthy 20 subjects (mean age: $32.3{\pm}6.6$ years). After making aliquots from fresh saliva, they were stored at room temperature, $4^{\circ}C$, $-20^{\circ}C$, and $-70^{\circ}C$. Saliva samples after lyophilization and dry-out procedure were stored at room temperature. After 1, 3, and 5 months, the same experiment was performed to investigate the changes in genomic DNA in saliva samples. In case of saliva aliquots stored at room temperature and dry-out samples, the results in 2 weeks were also included. Integrity of DNA from saliva stored under various storage conditions was also evaluated by PCR amplification analysis of $\beta$-globin gene fragments (989-bp). The results were as follows: 1. Concentration of genomic DNA extracted from saliva was lower than that from blood (p<0.05), but there were no significant differences among various types of saliva samples. Purities of genomic DNA extracted from stimulated whole saliva and lyophilized one were significantly higher than that from blood (p<0.05). Purity of genomic DNA extracted from buccal swab was lower than those from various types of saliva samples (p<0.05). 2. Concentration of genomic DNA from saliva stored at room temperature showed gradual reduction after 1 month, and decreased significantly in 3 and 5 months (p<0.05, p<0.01, respectively). Purities of DNA from saliva stored for 3 and 5 months showed significant differences with those of fresh saliva and stored saliva for 1 month (p<0.05). 3. In the case of saliva stored at $4^{\circ}C$ and $-20^{\circ}C$, there were no significant changes of concentration of genomic DNA in 3 months. Concentration of DNA decreased significantly in 5 months (p<0.05). 4. There were no significant differences of concentration of genomic DNA from saliva stored at $-70^{\circ}C$ and from lyophilized one according to storage period. Concentration of DNA showed decreasing tendency in 5 months. 5. Concentration of genomic DNA immediately extracted from saliva dried on Petri dish were 60% compared with that of fresh saliva. Concentration of DNA from saliva stored at room temperature after dry-out showed rapid reduction within 2 weeks (p<0.05). 6. Amplification of $\beta$-globin gene using PCR was successful in all lyophilized saliva stored for 5 months. At the time of 1 month, $\beta$-globin gene was successfully amplified in all saliva samples stored at $-20^{\circ}C$ and $-70^{\circ}C$, and in some saliva samples stored at $4^{\circ}C$. $\beta$-globin gene was failed to amplify in saliva stored at room temperature and dry-out saliva.

Isolation and Identification of Acanthamoeba in a Contact Lens Storage Case

  • Moon, Eun-Kyung
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.324-327
    • /
    • 2012
  • Acanthamoeba is a free-living amoeba that causes human infections, and recently the incidence of amoebic keratitis has increased among contact lens wearers. In order to investigate Acanthamoeba contamination of contact lens storage cases, a short survey was performed on 57 contact lens wearers, and Acanthamoeba was found in one contact lens storage case. To diagnose Acanthamoeba, the 18s small subunit ribosomal DNA (18s rDNA) gene was amplified by polymerase chain reaction (PCR), and subsequently, the isolate was identified as A. lugdunensis. This species was originally isolated from a freshwater pool in France, and was reported recently to be a cause of amoebic keratitis. This observation indicates the need for a large survey to investigate the extent of Acanthamoeba contamination, and suggests that contact lens wearers be aware of the importance of hygiene and of the implications of Acanthamoeba infection.

Changes of DNA fragmentation by Irradiation Doses and Storage in Gamma-irradiated Meats and Poultry (감마선 조사 육류, 가금류에서 저장전과 후의 조사선량에 따른 DNA fragmentation의 변화)

  • Lee, Hye-Jin;Kim, Sang-Mi;Park, Yoo-Kyoung;Yang, Jae-Seung;Kang, Myung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.2
    • /
    • pp.129-138
    • /
    • 2004
  • The changes in DNA damage were investigated during storage after irradiation. Beef, pork and chicken were irradiated at 1.0, 3.0 and 5.0 kGy and stored for 6 months at $-20^{\circ}C$. The comet assay was applied to the sample muscles at the beginning of irradiation and at the end of storage. Muscles were isolated, sliced, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min. and then stained. DNA fragmentation in tissues caused by irradiation was quantified as tail length and tail moment (tail length ${\times}$ % DNA in tail) by comet image analyzing system. Right after irradiation, the differences in tail length between unirradiated and irradiated muscles were significant(p<0.05) in beef, pork and chicken. With increasing the increasing doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. Similarly even 6 months after irradiation, all the irradiated muscles significantly showed longer tail length than the unirradiated controls. The results represented as tail moment showed similar tendency to those of tail length, but the latter parameter was more sensitive than the former. These results indicate that the comet assay could be one of the simple methods of detecting irradiated muscles. Moreover, this method suggest that using comet assay, we were able to detect DNA damage differences even after 6 months after irradiation.