• 제목/요약/키워드: DNA nanotechnology

검색결과 29건 처리시간 0.043초

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika;Mittal, Jagjiwan;Narang, Jagriti;Mishra, Annu;Pudake, Ramesh Namdeo
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.291-298
    • /
    • 2021
  • False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Synthesis and characterization of doxorubicin hydrochloride drug molecule-intercalated DNA nanostructures

  • Gnapareddy, Bramaramba;Deore, Pragati Madhukar;Dugasani, Sreekantha Reddy;Kim, Seungjae;Park, Sung Ha
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1294-1299
    • /
    • 2018
  • In this paper, we demonstrate the feasibility of constructing DNA nanostructures (i.e. DNA rings and double-crossover (DX) DNA lattices) with appropriate doxorubicin hydrochloride (DOX) concentration and reveal significant characteristics for specific applications, especially in the fields of biophysics, biochemistry and medicine. DOX-intercalated DNA rings and DX DNA lattices are fabricated on a given substrate using the substrateassisted growth method. For both DNA rings and DX DNA lattices, phase transitions from crystalline to amorphous, observed using atomic force microscopy (AFM) occurred above a certain concentration of DOX (at a critical concentration of DOX, $30{\mu}M$ of $[DOX]_C$) at a fixed DNA concentration. Additionally, the coverage percentage of DNA nanostructures on a given substrate is discussed in order to understand the crystal growth mechanism during the course of annealing. Lastly, we address the significance of optical absorption and photoluminescence characteristics for determining the appropriate DOX binding to DNA molecules and the energy transfer between DOX and DNA, respectively. Both measurements provide evidence of DOX doping and $[DOX]_C$ in DNA nanostructures.

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.

Genomic Susceptibility Analysis for Atopy Disease Using Cord Blood DNA in a Small Cohort

  • Koh, Eun Jung;Kim, Seung Jun;Ahn, Jeong Jin;Yang, Jungeun;Oh, Moon Ju;Hwang, Seung Yong
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.304-308
    • /
    • 2018
  • Atopic disease is caused by a complex combination of environmental factors and genetic factors, and studies on influence of exposure to various environmental factors on atopic diseases are continuously reported. However, the exact cause of atopic dermatitis is not yet known. Our study was conducted to analyse the association of SNPs with the development of atopic disease in a small cohort. Samples were collected from the Mothers' and Children's Environmental Health (MOCEH) study and 192 cord blood DNA samples were used to identify incidence of atopy due to influence of exposure to environmental factors. Genetic elements were analysed using a precision medicine research (PMR) array designed with various SNPs for personalized medicine. Case-control analysis of atopy disease revealed 253 significant variants (p<0.0001) and SNPs on five genes (CARD11, ZNF365, KIF3A, DMRTA1, and SFMBT1) were variants identified in previous atopic studies. These results are important to confirm the genetic mutation that may lead to the onset of foetal atopy due to maternal exposure to harmful environmental factors. Our results also suggest that a small-scale genome-wide association analysis is beneficial to confirm specific variants as direct factors in the development of atopy.

Association of a miR-502-Binding Site Single Nucleotide Polymorphism in the 3'-Untranslated Region of SET8 and the TP53 Codon 72 Polymorphism with Cervical Cancer in the Chinese Population

  • Yang, Shao-Di;Cai, Yan-Lin;Jiang, Pei;Li, Wen;Tang, Jian-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6505-6510
    • /
    • 2014
  • Objective: This study was conducted to identify whether polymorphic variants of set domain-containing protein 8 (SET8) and tumor protein p53 (TP53) codon 72, either independently or jointly, might be associated with increased risk for cervical cancer. Methods: We genotyped SET8 and TP53 codon 72 polymorphisms of peripheral blood DNA from 114 cervical cancer patients and 200 controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing. Results: The frequency of SET8 CC (odds ratios (OR) = 2.717, 95% CI=1.436-5.141) or TP53 GG (OR=2.168, 95% CI=1.149-4.089) genotype was associated with an increased risk of cervical cancer on comparison with the SET8 TT or TP53 CC genotypes, respectively. In additional, interaction between the SET8 and TP53 polymorphisms increased the risk of cervical cancer in a synergistic manner, with the OR being 9.913 (95% CI=2.028-48.459) for subjects carrying both SET8 CC and TP53 GG genotypes. Conclusion: These data suggest that there are significant associations between the miR-502-binding site SNP in the 3'-UTR of SET8 and the TP53 codon 72 polymorphism with cervical cancer in Chinese, and there is a gene-gene interaction.

DNA 기반 금속 나노 와이어의 제작기술 (DNA Metallization for Nanoelectronics)

  • 한경엽;이정규
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.253-257
    • /
    • 2018
  • DNA를 기반으로 한 금속 나노와이어는 전기적인 물성은 떨어지지만, 제작 방식이 간단하고, 대면적에서 대량으로 제작할 수 있으며, 유기 반응을 통해 분자 소자 제작의 기판으로도 사용가능한 차세대 재료로 전망된다. 본 총설에서는 DNA 금속화 반응을 이용한 나노와이어의 제작 및 3차원 구조체의 제작 기술에 대해 소개하고, 이와 관련한 연구 현황과 발전 방향에 대해 논의하고자 한다.

Nanoparticle-based Detection Technology for DNA Analysis

  • Park, Hyun-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.221-226
    • /
    • 2003
  • With the current rapid development of nanotechnology and synthesis technology for designed oligonucleotides or oligonucleotide-modified nanoparticle conjugates, the combined strategies have become one of the most valuable methods in detection technology for DNA analysis. Using the uniquely recognizable interactions of pre-designed DNA molecules in assembling nanoparticles, various novel approaches have been recently developed towards detecting specific DNA sequences. Here we describe the key fundamentals and issues of this promising strategies ranging from the initial findings of rationally designed DNA-based assembly of nanoparticles to the extended chip-based detection system. Some limitations of these new strategies and possible approaches will be also discussed for the practical application in the area of DNA microarray detection.