Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.008

Synthesis and characterization of doxorubicin hydrochloride drug molecule-intercalated DNA nanostructures  

Gnapareddy, Bramaramba (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Deore, Pragati Madhukar (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Dugasani, Sreekantha Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Kim, Seungjae (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Park, Sung Ha (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
Abstract
In this paper, we demonstrate the feasibility of constructing DNA nanostructures (i.e. DNA rings and double-crossover (DX) DNA lattices) with appropriate doxorubicin hydrochloride (DOX) concentration and reveal significant characteristics for specific applications, especially in the fields of biophysics, biochemistry and medicine. DOX-intercalated DNA rings and DX DNA lattices are fabricated on a given substrate using the substrateassisted growth method. For both DNA rings and DX DNA lattices, phase transitions from crystalline to amorphous, observed using atomic force microscopy (AFM) occurred above a certain concentration of DOX (at a critical concentration of DOX, $30{\mu}M$ of $[DOX]_C$) at a fixed DNA concentration. Additionally, the coverage percentage of DNA nanostructures on a given substrate is discussed in order to understand the crystal growth mechanism during the course of annealing. Lastly, we address the significance of optical absorption and photoluminescence characteristics for determining the appropriate DOX binding to DNA molecules and the energy transfer between DOX and DNA, respectively. Both measurements provide evidence of DOX doping and $[DOX]_C$ in DNA nanostructures.
Keywords
DNA nanostructure; Doxorubicin; Atomic force microscope; Absorption; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Park, B.J. Lee, S.R. Dugasani, Y. Cho, C. Kim, M. Seo, T. Lee, Y.M. Jhon, J. Choi, S. Lee, S.H. Park, S.C. Jun, D. Yeom, F. Rotermund, J.H. Kim, Nanoscale 7 (2015) 18089-18095.   DOI
2 J. Lee, S. Hamada, S.U. Hwang, R. Amin, J. Son, S.R. Dugasani, S. Murata, S.H. Park, Sci. Rep. 3 (2013) 2115.   DOI
3 D. Hynek, L. Krejcova, O. Zitka, V. Adam, L. Trnkova, J. Sochor, M. Stiborova, T. Eckschlager, J. Hubalek, R. Kizek, Int. J. Electrochem. Sci. 7 (2012) 34-49.
4 S.O. Kelly, J.K. Barton, N.M. Jackson, M.G. Hill, Bioconjugate Chem. 8 (1997) 31-37.   DOI
5 K.L.F. Patty, T. Claudia, J. Am. Chem. Soc. 121 (1999) 1-7.   DOI
6 R. Hajian, N. Shams, M. Mohagheghian, J. Braz. Chem. Soc. 20 (2009) 1399-1405.   DOI
7 S.R. Dugasani, N. Lee, J. Lee, B. Kim, S. Hwang, K.W. Lee, W.N. Kang, S.H. Park, Sci. Rep. 3 (2013) 1819.   DOI
8 P. Yin, R.F. Hariadi, S. Sahu, H.M. Choi, S.H. Park, T.H. Labean, J.H. Reif, Science 321 (2008) 824-826.   DOI
9 Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jiang, C. Mao, Nature 452 (2008) 198-201.   DOI
10 P.W.K. Rothermund, Nature 440 (2006) 297-302.   DOI
11 S.R. Dugasani, B. Park, B. Gnapareddy, S.R. Pamanji, S. Yoo, K.W. Lee, S. Lee, S.C. Jun, J.H. Kim, C. Kim, S.H. Park, RSC Adv. 5 (2015) 55839-55846.   DOI
12 S.J. Kim, J. Jung, K.W. Lee, D. Yoon, T.S. Jung, S.R. Dugasani, S.H. Park, H.J. Kim, ACS Appl. Mater. Interfaces 5 (2013) 10715-10720.   DOI
13 S.R. Dugasani, M. Kim, I. Lee, J. Kim, B. Gnapareddy, K.W. Lee, T. Kim, H. Nam, G.H. Kim, S.C. Park, S.H. Park, Nanotechnology 26 (2015) 275604.   DOI
14 B. Gnapareddy, T. Ha, S.R. Dugasani, J. Kim, B. Kim, T. Kim, J.H. Kim, S.H. Park, RSC Adv. 5 (2015) 39409-39415.   DOI
15 S.R. Dugasani, T. Ha, B. Gnapareddy, K. Choi, J. Lee, B. Kim, J.H. Kim, S.H. Park, ACS Appl. Mater. Interfaces 6 (2014) 17599-17605.   DOI
16 E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394 (1998) 539-544.   DOI
17 B. Gnapareddy, S.R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J.H. Kim, K. Oh, S.H. Park, Sci. Rep. 5 (2015) 12722.   DOI
18 A.A. Gabizon, Clin. Cancer Res. 7 (2001) 223-225.
19 J. Kopecek, P. Kopeckova, T. Minko, Z. Lu, Eur. J. Pharm. Biopharm. 50 (2000) 61-81.   DOI
20 A.Z. Wang, R. Langer, O.C. Farokhzad, Annu. Rev. Med. 63 (2012) 185-198.   DOI
21 K.-R. Kim, H.Y. Kim, Y.-D. Lee, J.S. Ha, J.H. Kang, H. Jeong, D. Bang, Y.T. Ko, S. Kim, H. Lee, D.-R. Ahn, J. Contr. Release 243 (2016) 121-131.   DOI
22 Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, G.Z. Wang, G. Zou, X. Liang, H. Yan, B. Ding, J. Am. Chem. Soc. 134 (2012) 13396-13403.   DOI
23 M. Konishi, Y. Tabata, M. Kariya, A. Suzuki, M. Mandai, K. Nanbu, K. Takakura, S. Fujii, J. Contr. Release 92 (2003) 301-313.   DOI
24 Y. Wu, K. Sefah, H. Liu, R. Wang, W. Tan, Proc. Natl. Acad. Sci. 107 (2010) 5-10.   DOI
25 J. Yan, C. Hu, P. Wang, B. Zhao, X. Ouyang, J. Zhou, R. Liu, D. He, C. Fan, S. Song, Angew. Chem. Int. Ed. 54 (2015) 2431-2435.   DOI
26 R.A. Petros, J.M. DeSimone, Nat. Rev. Drug Discov. 9 (2010) 615-627.   DOI
27 S. Hamada, S. Murata, Angew. Chem. Int. Ed. 48 (2009) 6820-6823.   DOI
28 A.V. Pinheiro, D. Han, W.M. Shih, H. Yan, Nat. Nanotechnol. 6 (2011) 763-772.   DOI
29 J. Li, C. Fan, H. Pei, J. Shi, Q. Huang, Adv. Mater. 25 (2013) 4386-4396.   DOI
30 J. Lee, S. Hamada, R. Amin, S. Kim, A. Kulkarni, T. Kim, Y. Roh, S. Murata, S.H. Park, Small 8 (2012) 374-377.   DOI
31 J. Kim, J. Lee, S. Hamada, S. Murata, S.H. Park, Nat. Nanotechnol. 10 (2015) 528-533.   DOI
32 E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394 (1998) 539-544.   DOI
33 S.R. Dugasani, J.A. Kim, B.H. Kim, P. Joshirao, B. Gnapareddy, C. Vyas, T.S. Kim, S.H. Park, V. Manchanda, ACS Appl. Mater. Interfaces 6 (2014) 2974-2979.   DOI