• Title/Summary/Keyword: DNA migration

Search Result 138, Processing Time 0.04 seconds

Antioxidant Activities and Inhibitory Effect on Oxidative DNA Damage of extracts from Abeliophylli distichi Folium (미선나무 잎 추출물의 항산화 및 산화적 DNA 손상억제 활성)

  • Park, Jae-Ho
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.95-99
    • /
    • 2011
  • Objective : In this study, we demonstrate the protective effect on oxidative DNA damage of leaf extracts from Abeliophylli distichi Folium via its antioxidant activity for the establishment of new value for the herbal medicine. Methods : Abeliophylli distichi Folium leaves were extracted with hot-water and ethylacetate (EtOAC). The 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical and hydroxyl scavenging assay and $Fe^{2+}$ chelating assay were performed for antioxidative effect and ${\varphi}$X-174 RF I DNA cleavage assay and intracellular DNA damage assay were used for inhibitory effect of intracellular DNA damage. Results : In DPPH, Hydroxyl radical scavenging activity and $Fe^{2+}$ chelating activity of EtOAC extracts were 94.72%, 62.88%, 41.13%, and hot-water extracts were 88.86%, 56.7%, 37.4% at 200 ${\mu}g/m{\ell}$, respectively. Also, those extracts showed protective effect of DNA damage against the oxidative stress. Conclusion : These results indicated that the leaf extracts of Abeliophylli distichi Folium can be used as a natural antioxidants, which effectively inhibits the oxidative DNA damage.

Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells. (PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성)

  • Kim, Hye-Nan;Chung, Hye-Shin
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

Buddleja officinalis prevents the normal cells from oxidative damage via antioxidant activity

  • Hong, Se-Chul;Jeong, Jin-Boo;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.21 no.6
    • /
    • pp.449-456
    • /
    • 2008
  • The flowers of Buddleja officinalis are used to treat sore and damaged eyes, a condition which is similar to skin wounds. However, whether it has any protective effect on oxidative DNA damage and cell death induced by hydroxyl radical remains unclear. In this study, we evaluated the protective effects of the extracts against oxidative DNA and cell damage caused by hydroxyl radical. DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging assay, and $Fe^{2+}$ chelating assay were used to evaluate the antioxidant properties. phi X 174 RF I plasmid DNA and intracellular DNA migration assay were used to evaluate the protective effect against oxidative DNA damage. Lastly, MTT assay and lipid peroxidation assay were used to evaluate the protective effect against oxidative cell damage. It was found to prevent intracellular DNA and the normal cells from oxidative damage caused by hydroxyl radical via antioxidant activities. These results suggest that Buddleja officinalis may exert the inhibitory effect on ROS-induced carcinogenesis by blocking oxidative DNA damage and cell death.

Complex Detection Between Transcription Regulator and Promoter DNA by UV Spectroscopic Method

  • Lee, Kyungmin;Gang, Jongback
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • UV spectrophotometer was used to detect protein-DNA complex from DNA melting profile under constant temperature increase. Melting temperature (Tm) was $43^{\circ}C$ in copA duplex DNA alone. In the presence of Proteus mirabilis transcription regulator protein (PMTR) protein at 0.2 and 0.4 ${\mu}M$, Tm's were $45{\pm}0.5$ and $47.6{\pm}0.6^{\circ}C$, respectively. According to fluorescence polarization and gel shift assay. PMTR:copA complex was detected by the retarded migration on gel and the dissociation constant ($K_d$) was $(9.2{\pm}2.8){\times}10^{-9}M$.

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

Baicalein and Baicalin from the Radix of Scutellaria baicalensis Georgi Inhibits Oxidative DNA Damage and Apoptosis via its Antioxidant Activity

  • Garcia, Nellie Ann S.;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.489-497
    • /
    • 2009
  • In this study, we evaluated and compared the protective effects of two major constituents, baicalein and baicalin, against oxidative DNA and cell damages caused by hydroxyl radical. Antioxidant properties were evaluated using DPPH and hydroxyl radicals scavenging assays and $Fe^{2+}$ chelating assay. ${\varphi}X$ 174 RFI plasmid DNA and intracellular DNA migration assay were used to evaluate the protective effect against oxidative DNA damage. Also, MTT and lipid peroxidation assays were used to evaluate their protective effects against oxidative cell damage. Both baicalein and baicalin prevented intracellular DNA and cells from oxidative damage caused by hydroxyl radical via antioxidant activities. Baicalein demonstrated a stronger antioxidant activity in scavenging DPPH radicals and chelating $Fe^{2+}$ while baicalin scavenged hydroxyl radicals more efficiently. The differences in the level of baicalein and baicalin pose a different pathological pathway for each. The antioxidant activity of baicalin was due to its ability to scavenge hydroxyl radical whilst baicalein was a stronger $Fe^{2+}$ chelator. Further investigation to compare the molecular mechanisms of antitumor activities of baicalein and baicalin is vital to anticancer research.

Establishment and Characterization of MTDH Knockdown by Artificial Micro RNA Interference - Functions as a Potential Tumor Suppressor in Breast Cancer

  • Wang, Song;Shu, Jie-Zhi;Cai, Yi;Bao, Zheng;Liang, Qing-Mo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2813-2818
    • /
    • 2012
  • Background: Considerable evidence suggests that metadherin (MTDH) is a potentially crucial mediator of tumor malignancy and an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk. Inhibition of MTDH expression by RNA interference has been shown in several previous research, but silencing MTDH expression by microRNA (miRNA) interference in breast cancer has not been established. In the present study, we investigated the role of MTDH-miRNA in down-regulation of proliferation, motility and migration of breast carcinoma cells. Methods: Expression vectors of recombinant plasmids expressing artificial MTDH miRNA were constructed and transfected to knockdown MTDH expression in MDA-MB-231 breast cancer cells. Expression of MTDH mRNA and protein was detected by RT-PCR and Western blot, respectively. MTT assays were conducted to determine proliferation, and wound healing assays and transwell migration experiments for cell motility and migration. Results: Transfection of recombinant a plasmid of pcDNA-MTDH-miR-4 significantly suppressed the MTDH mRNA and protein levels more than 69% in MDA-MB-231 breast cancer cells. This knockdown significantly inhibited proliferation, motility and migration as compared with controls. Conclusions: MTDH-miRNA may play an important role in down-regulating proliferation, motility and migration in breast cancer cells, and should be considered as a potential small molecule inhibitor therapeutic targeting strategy for the future.

TATA-Binding Protein-Related Factor 2 Is Localized in the Cytoplasm of Mammalian Cells and Much of It Migrates to the Nucleus in Response to Genotoxic Agents

  • Park, Kyoung-ae;Tanaka, Yuji;Suenaga, Yusuke;Tamura, Taka-aki
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 2006
  • TBP (TATA-binding protein)-related factor 2 (TRF2) regulates transcription during a nuber of cellular processes. We previously demonstrated that it is localized in the cytoplasm and is translocated to the nucleus by DNA-damaging agents. However, the cytoplasmic localization of TRF2 is controversial. In this study, we reconfirmed its cytoplasmic localization in various ways and examined its nuclear migration. Stresses such as heat shock, redox agents, heavy metals, and osmotic shock did not affect localization whereas genotoxins such as methyl methanesulfonate (MMS), cisplatin, etoposide, and hydroxyurea caused it to migrate to the nucleus. Adriamycin, mitomycin C and ${\gamma}$-rays had no obvious effect. We determined optimal conditions for the nuclear migration. The proportions of cells with nuclei enriched for TRF2 were 25-60% and 5-10% for stressed cells and control cells, respectively. Nuclear translocation was observed after 1 h, 4 h and 12 h for cisplatin, etoposide and MMS and hydroxyurea, respectively. The association of TRF2 with the chromatin and promoter region of the proliferating cell nuclear antigen (PCNA) gene, a putative target of TRF2, was increased by MMS treatment. Thus TRF2 may be involved in genotoxin-induced transcriptional regulation.

DNA Analysis of mtDNA COI Gene in the Sharp-toothed Eel (Muraenesox cinereus Forskal) from Yeosu, Jinhae, Jeju, Goseoung, Jangheung and Haenam Populations in Korea Using PCR-aided RFLP

  • Oh, Taeg-Yun;Jeong, Sun-Beom;Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.551-554
    • /
    • 2011
  • The production of the sharp-toothed eel by commercial catch off waters of Korea is annually declined after 1978. This study was carried out to obtain the stock management of the sharp-toothed eel using the PCR-aided RFLP method. The mtDNA COI gene was amplified using species-specific primers and PCR product was observed to 700 bp. Amplified DNA fragments were treated with six kinds of restriction enzymes (BaeHI, EcoRI, PstI, Ksp22, HinfI and HaeIII). The treatment of HaeIII showed a distinct PCR product between Yeosu/Jinhae/Jeju/Goseoung and Jangheung/Haenam populations that were observed from 300 to 400 bp in reference to 100 bp molecular marker. However, DNA fragment within populations had an identical pattern. The phylogenetic homology is 82% between two populations inferred from RFLP PCR product pattern using NTsysPC ver. 2.1. The use of HaeIII plays an important role in discriminating populations. It is thought that adults after over-wintering in the southern part of Jeju migrate to the Yeosu, Jinhae and Goseoung regions to spawn instead of to southwestern waters. Individuals within populations showed a relatively active genetic mixing and migration regardless of geography. However, the genetic ancestor of Jangheung and Haenam populations is appeared to be more adjacent to China or Japan than Jeju.

Genetic structure of Larimichthys polyactis (Pisces: Sciaenidae) in the Yellow and East China Seas inferred from microsatellite and mitochondrial DNA analyses

  • Kim, Jin-Koo;Min, Gi-Sik;Yoon, Moon-Geun;Kim, Yeong-Hye;Choi, Jung-Hwa;Oh, Taeg-Yun;Ni, Yong
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.313-320
    • /
    • 2012
  • Genetic variation was surveyed at four microsatellite loci and 1416 base pairs (bp) of the mitochondrial DNA (mtDNA) cytochrome c oxidase I gene (COI) to clarify the genetic structure of the small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas, especially regarding four provisional populations, (one Korean and three Chinese populations). Based on microsatellite DNA variations, the estimated expected heterozygosity ($H_E$) in each population ranged from 0.776 to 0.947. The microsatellite pairwise $F_{ST}$ estimates showed no significant genetic differentiation between the populations. MtDNA variations also indicated no genetic structure in L. polyactis, but very high variability. The absence of genetic differentiation among and within populations of L. polyactis may either result from the random migration of the adult or the passive dispersal of the eggs and larvae.