• 제목/요약/키워드: DNA methyltransferase 2

검색결과 60건 처리시간 0.026초

Chlamydomonas reinhardtii로부터 분리, 정제된 DNA Methyltransferase 활성에 대한 Polyamine의 영향 (Effect of Polyamines on purified DNA Methyltransferase from Chlamydomonas reinhardtii)

  • 이명민
    • Journal of Plant Biology
    • /
    • 제32권4호
    • /
    • pp.331-341
    • /
    • 1989
  • DNA methyltransferase was purified 282.6-fold from Chlamydomonas reinhardtii 21gr (mt+) gametic cell to examine the effect of polyamine on the enzyme acctivity. Polyacrylamide gel electrophoresis(PAGE) revealed at least three bands(1 major band, 2 minor bands). Among these, the major band represents DNA methyltransferase. Polyacrylamide gel electrophoresis in the presence of 0.1% sodium dodecylsulfate(SDS-PAGE) revealed a major band with M.W. 60,000. DNA methyltransferase activity was inhibited more effectively by spermine than by spermidine, and the inhibition by putrescine was smaller than spermine and spermidine. DNA methyltransferase activity was inhibited by 40% and 53% at 5mM and 20mM spermine, respectively. In the case of spermidine, the inhibition was 35% at 10mM and 44% at 20mM. However, the inhibition by putrescine appeared only above 5mM and reached about 25% at 20mM.

  • PDF

Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제 (Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053)

  • 김정희;오현명
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.103-111
    • /
    • 2019
  • DNA 메틸화는 유전체의 무결성의 유지 및 유전자 발현 조절과 같은 박테리아의 다양한 과정에 관여한다. Alphaproteobacteria 종에서 보존된 DNA 메틸 전이 효소인 CcrM은 S-아데노실 메티오닌을 공동 기질로 사용하여 $N^6$-아데닌 또는 $N^4$-시토신의 메틸 전이 효소 활성을 갖는다. Celeribacter marinus IMCC 12053는 해양 환경에서 분리된 알파프로테오박테리아로서 GpC 시토신의 외향고리 아민의 메틸기를 대체하여 $N^4$-메틸 시토신을 생산한다. 단일 분자 실시간 서열 분석법(SMRT)을 사용하여, C. marinus IMCC12053의 메틸화 패턴을 Gibbs Motif Sampler 프로그램을 사용하여 확인하였다. 5'-GANTC-3'의 $N^6$-메틸 아데노신과 5'-GpC-3'의 $N^4$-메틸 시토신을 확인하였다. 발현된 DNA 메틸전이 효소는 계통 발생 분석법을 사용하여 선택하여 pQE30 벡터에 클로닝 후 $dam^-/dcm^-$ 대장균을 사용하여 클로닝된 DNA 메틸라아제의 메틸화 활성을 확인하였다. 메틸화 효소를 코딩하는 게놈 DNA 및 플라스미드를 추출하고 메틸화에 민감한 제한 효소로 절단하여 메틸화 활성을 확인하였다. 염색체와 메틸라아제를 코드하는 플라스미드를 메틸화시켰을 때에 제한 효소 사이트가 보호되는 것으로 관찰되었다. 본 연구에서는 분자 생물학 및 후성유전학을 위한 새로운 유형의 GpC 메틸화 효소의 잠재적 활용을 위한 외향고리 DNA 메틸라제의 특성을 확인하였다.

Burley 21 담배에서 Putrescine N-Methyltransferase 유전자의 클로닝 (Molecular Cloning of Putrescine N-Methyltransferase Gene from Burley 21 Tobacco)

  • 이정헌;김선원;류명현;박성원
    • 한국연초학회지
    • /
    • 제25권2호
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, many researches for plant alkaloids, one of the largest groups of natural products, are reported because of their various pharmacological activity. This study was carried out to clone putrescine N-methyltransferase (PMT) gene which is a key enzyme in diverting polyamine metabolism towards the biosynthesis of nicotine and related alkaloids from Burley tobacco. To induce expression of PMT gene in tobacco plant, the floral meristem was removed and then mRNA was purified from root. cDNA encoding PMT gene was isolated by RT PCR and cloned. Three different groups of clones were screened by PCR and restriction enzyme digestion analysis and were characterized. The data of these screening revealed that three types of PMT are present in Burley tobacco. Comparison of the nucleotide sequence of this three genes encoding putative PMT with those of other tobaccos revealed that two types of PMT are newly discovered from Nicotiana tabacum cv. Br21 tobacco and they were same as PMT2, PMT3 of N. tabacum cv. Xanthi.

Molecular Characterization of Porcine DNA Methyltransferase I

  • Lee, Yu-Youn;Kang, Hye-Young;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제34권4호
    • /
    • pp.283-288
    • /
    • 2010
  • During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked. changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

한국인의 비소세포폐암종에서 O6-methylguanine-DNA methyltransferase (MGMT)의 발현도 분석 (Immunohistochemical Expression of O6-methylguanine-DNA Methyltransferase (MGMT) in Korean Patients with Non-Small Cell Lung Cancer.)

  • 이경은;홍영습;최필조;노미숙
    • 생명과학회지
    • /
    • 제18권4호
    • /
    • pp.580-584
    • /
    • 2008
  • 본 연구에서는 손상된 DNA를 수복하는 중요한 효소로 알려진 $O^6-methylguanine-DNA$ methyltransferase (MGMT)발현의 의미를 비소세포폐암종에서 면역조직화학 염색법으로 알아보고자 하였다. 동아대학교 의료원에서 2001년부터 2004년까지 외과적으로 적출한 폐암종 조직 중 비소세포암종으로 진단된 74예를 연구대상으로 하였다. 면역염색 결과, MGMT 발현은 총 74예 중 49예(66.2%)에서 양성을 보였으며, 25예(33.8%)에서 단백 소실을 보였다. 조직학적 유형에 따른 결과를 살펴보면, 편평세포암종은 8/39예(20.5%)에서 단백 소실이 보였고, 샘암종은 17/35예(48.6%)에서 단백 소실이 관찰되어 통계적으로 유의한 차이가 관찰되었다(p=0.021). 하지만 나이, 성별, 흡연유무, 종양 크기, T 병기 및 림프절 전이에 따른 유의한 차이는 관찰되지 않았다(p>0.05). MGMT 단백 발현 소실은 특히 promoter 메틸화와 연관되어 종양에서 관찰된다고 알려져 있으므로, 향후 연구에서는 비소세포폐암종의 MGMT 단백 소실에 대한 임상적 의의를 밝히기 위하여 promoter 메틸화 연구가 추가적으로 수행되어져야 될 것으로 사료된다.

사람 암세포에서의 $O^6$-methylguanine-DNA methyltransferase의 발현과 알킬화 항암제에 대한 감수성 (Expression of $O^6$-methylguanine-DNA methyltransferase and Sensitivity to Anticancer Alkylating Agents in Human Cancer Cells)

  • 오혜영;정해관;한의식;정성철;허옥순;손수정;김영미;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • 제3권2호
    • /
    • pp.122-131
    • /
    • 1995
  • Five human cancer cell lines (HeLa S3, Hep 3B, KATO III, Hs 683, HeLa MR) and one human normal cell line (WI-38) were examined cell viability, northern blot analysis, western blot analysis, and in situ hybridization for the expression $O_{6}$ -methylguanine-DNAmethyltransferase (MGMT), which can repair $O_{6}$ -methylguanine produced in DNA by alkylating agents. In cell viability test, the lethal sensitivities of each strain against anti-tumor drug N,N-bis(2-chloroethyl)- N-nitrosourea (BCNU) were counted, and both BCNU treated and untreated cell extracts were examined for their MGMT inducibility by RNA dot blot analysis. Cell lines did not show MGMT induction by BCNU pretreatment. Tlle MGMT activity was assayed by measuring the $^3$H radioactivity transferred from the substrate DNA containing [methyl-$^3$H)-O$_{6}$ -methylguanine to acceptor molecules in the cell extracts. Extracts from the majority of tumor strains and normal cells contained substantial MGMT activity of varying degree, while the known Mer$^{[-10]}$ cell (lacked or severely depleted in MGMT activity) Hela MR, and Hs 683 (proved to be Mer$^{[-10]}$ ) were much more sensitive to BCNU than the rest of tumor strains, as measured by cell viability test. Overall results above, KATO III showed the highest expression level of MGMT among the strains examined. Furthermore, with all the tumor and normal strains tested, a good correlation was observed between MGMT expression and cellular resistance to BCNU. The varying levels of expression of MGMT in human cancer cells found in this study should provide a molecular basis for MGMT expression among tumor strains from different tissue origin, the information of antitumor agents selection for chemotherapy of cancers.

  • PDF

환경오염 물질과 에피제네틱스 (Environmental Pollutants and Epigenetics)

  • 박성균;이선동
    • 한국환경보건학회지
    • /
    • 제35권5호
    • /
    • pp.343-354
    • /
    • 2009
  • Since Barker found associations between low birth weight and several chronic diseases later in life, the hypothesis of fetal origins of adult disease (aka, Barker Hypothesis) and epigenetics have been emerging as a new paradigm for geneenvironment interaction of chronic disease. Epigenetics is the study of heritable changes in gene silencing that occur without any change in DNA sequence. Gene expression can be regulated by several epigenetic mechanisms, including DNA methylation and histone modifications, which may be associated with chronic conditions, such as cancers, cardiovascular disease, and type-2 diabetes. One carbon metabolism which involves the transfer of a methyl group catalyzed by DNA methyltransferase is an important mechanism by which DNA methylation occurs in promoter regions and/or repetitive elements of the genome. Environmental factors may induce epigenetic modification through production of reactive oxygen species, alteration of methyltransferase activity, and/or interference with methyl donors. In this review, we introduce recent studies of epigenetic modification and environmental factors, such as heavy metals, environmental hormones, air pollution, diet and psychosocial stress. We also discuss epigenetic perspectives of early life environmental exposure and late life disease occurrence.

Identification and Characterization of Protein Arginine Methyltransferase 1 in Acanthamoeba castellanii

  • Moon, Eun-Kyung;Kong, Hyun-Hee;Hong, Yeonchul;Lee, Hae-Ahm;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.109-114
    • /
    • 2017
  • Protein arginine methyltransferase (PRMT) is an important epigenetic regulator in eukaryotic cells. During encystation, an essential process for Acanthamoeba survival, the expression of a lot of genes involved in the encystation process has to be regulated in order to be induced or inhibited. However, the regulation mechanism of these genes is yet unknown. In this study, the full-length 1,059 bp cDNA sequence of Acanthamoeba castellanii PRMT1 (AcPRMT1) was cloned for the first time. The AcPRMT1 protein comprised of 352 amino acids with a SAM-dependent methyltransferase PRMT-type domain. The expression level of AcPRMT1 was highly increased during encystation of A. castellanii. The EGFP-AcPRMT1 fusion protein was distributed over the cytoplasm, but it was mainly localized in the nucleus of Acanthamoeba. Knock down of AcPRMT1 by synthetic siRNA with a complementary sequence failed to form mature cysts. These findings suggested that AcPRMT1 plays a critical role in the regulation of encystation of A. castellanii. The target gene of AcPRMT1 regulation and the detailed mechanisms need to be investigated by further studies.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.