• Title/Summary/Keyword: DNA interaction

Search Result 464, Processing Time 0.028 seconds

Association of circulating 25-hydroxyvitamin D levels with hypertension and blood pressure values in Korean adults: A Mendelian randomization study on a subset of the Korea National Health and Nutrition Survey 2011-2012 population

  • Kwak, So-Young;Cho, Yoonsu;Oh, Hannah;Shin, Min-Jeong
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.498-508
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Lower circulating 25-hydroxyvitamin D [25(OH)D] levels are associated with a higher risk of hypertension (HTN); however, it remains unclear whether the relationship is causal. We aimed to evaluate the causal effects of circulating 25(OH)D levels on the prevalence of HTN in the Korean population using the Mendelian randomization (MR) approach. SUBJECTS/METHODS: Epidemiological data, serum 25(OH)D data, and genomic DNA biospecimens were obtained from 2,591 participants, a subset of the study population in the Korea National Health and Nutrition Survey 2011-2012. Five 25(OH)D-related single nucleotide polymorphisms (SNPs; DHCR7 rs12785878, CYP2R1 rs10741657, CYP2R1 rs12794714, CYP24A1 rs6013897, and GC rs2282679), identified a priori from genome-wide association studies, were used as instrument variables (IVs) for serum 25(OH)D levels. In the MR analysis, we performed IV analyses using the two-stage least squares method. RESULTS: In the observational analysis, circulating 25(OH)D levels were found to be inversely associated with the HTN prevalence in ordinary least squares models (odds ratio: 0.97, 95% confidence interval: 0.96, 0.99) after adjusting for the potential confounders. There were differences in the circulating 25(OH)D levels across genotypes of individual SNPs. In the MR analysis, using individual SNPs as IVs, 25(OH)D levels were not associated with the HTN prevalence. CONCLUSIONS: We found no association between genetically determined circulating 25(OH)D levels and HTN in Korean adults. Our results are listed owing to the relatively small sample size and possible weak instrument bias; therefore, further studies are needed to confirm these results.

Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells

  • Jang, Jaewoong;Song, Jaewon;Sim, Inae;Yoon, Yoosik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.307-319
    • /
    • 2021
  • Dysregulation of the Wnt pathway causes various diseases including cancer, Parkinson's disease, Alzheimer's disease, schizophrenia, osteoporosis, obesity and chronic kidney diseases. The modulation of dysregulated Wnt pathway is absolutely necessary. In the present study, we evaluated the anti-inflammatory effect and the mechanism of action of Wnt-C59, a Wnt signaling inhibitor, in lipopolysaccharide (LPS)-stimulated epithelial cells and macrophage cells. Wnt-C59 showed a dose-dependent anti-inflammatory effect by suppressing the expression of proinflammatory cytokines including IL6, CCL2, IL1A, IL1B, and TNF in LPS-stimulated cells. The dysregulation of the Wnt/β-catenin pathway in LPS stimulated cells was suppressed by WntC59 treatment. The level of β-catenin, the executor protein of Wnt/β-catenin pathway, was elevated by LPS and suppressed by Wnt-C59. Overexpression of β-catenin rescued the suppressive effect of Wnt-C59 on proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) activity. We found that the interaction between β-catenin and NF-κB, measured by co-immunoprecipitation assay, was elevated by LPS and suppressed by Wnt-C59 treatment. Both NF-κB activity for its target DNA binding and the reporter activity of NF-κB-responsive promoter showed identical patterns with the interaction between β-catenin and NF-κB. Altogether, our findings suggest that the anti-inflammatory effect of Wnt-C59 is mediated by the reduction of the cellular level of β-catenin and the interaction between β-catenin and NF-κB, which results in the suppressions of the NF-κB activity and proinflammatory cytokine expression.

THE EFFECT OF DIFFERENTIAL MODULATION OF N-METHYL-D-ASPARTATE RECEPTOR ON THE PROLIFERATION OF PRIMARY CULTURED NORMAL HUMAN ORAL KERATINOCYTES: DNA SYNTHESIS RATE ANALYSIS (N-methyl-D-aspartate 수용기의 다양한 조절이 일차 배양된 정상사람구강각화세포의 증식에 미치는 영향; DNA 합성율 평가)

  • Kim, In-Soo;Paik, Ki-Suk;Chang, Mi-Sook;Lee, Won;Lee, Seung-Pyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • In the present study, I investigated the effects of N-methyl-D-aspartate (NMDA), arachidonic acid (AA), and Nitric Oxide Synthase Inhibitor (NOSI), alone or in combination, on the proliferation of cultured primary normal human oral keratinocytes (NHOK). The purpose of this study was therefore the preliminary study for the examination of the interaction between these agents and NHOK in order to elucidate the mechanisms by which epithelial growth and regeneration are regulated. NHOK were obtained from gingival tissue of 20 individuals aged 20 to 29, and third passage (P3) cells were used for this study. The DNA synthesis was measured by the BrdU assay. Addition of low concentration of AA ($1{\mu}M$) and high concentration of AA with NMDA group (NMDA+AA $10{\mu}M$) made DNA synthesis rate increase significantly at the early stage. Adding NNA ($10{\mu}M$) affected DNA synthesis rate to increase significantly in 4 hours. At the early stage, DNA synthesis was significantly active in the NOS-I with NMDA groups than in the control and the NMDA-only group, while it didn't become statistically meaningful in 24 hours. AA $1{\mu}M$ and NNA $10{\mu}M$ may induce the proliferation of the NHOK independently and NOS-I may induce the proliferation of the NHOK with NMDA. These reactions might be related to the NMDA receptor in the cell and the change of the intracellular calcium ion concentration.

Synthesis of Diketo Copper(II) Complex and Its Binding toward Calf Thymus DNA (CTDNA) (이케토 구리(II) 착물의 합성 및 송아지 Thymus DNA(CTDNA)와의 상호작용)

  • Tak, Aijaz Ahmad;Arjmand, Farukh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.177-182
    • /
    • 2011
  • A diketo-type ligand was synthesized by the Knoevenagel condensation reaction of thiophene-2-aldehyde with acetylacetone, subsequently its transition metal complexes with Cu(II), Ni(II), and Co(II) chlorides were also prepared. All the complexes were characterized by various physico-chemical methods. The molar conductivity data reveals ionic nature for the complexes. The electronic spectrum and the EPR values suggest square planar geometry for the Cu(II) ion. Interaction of the Cu(II) complex with CTDNA (calf thymus DNA) was studied by absorption spectral method and cyclic voltammetry. The $k_{obs}$ values versus [DNA] gave a linear plot suggesting psuedo-first order reaction kinetics. The cyclic voltammogram of the Cu(II) complex reveals a quasi-reversible wave attributed to Cu(II)/Cu(I) redox couple for one electron transfer with $E_{1/2}$ values -0.240 V and -0.194 V. respectively. On addition of CTDNA, there is a shift in the $E_{1/2}$ values 168 mV and 18 mV respectively and decrease in Ep values. The shift in $E_{1/2}$ values in the presence of CTDNA suggests strong binding of Cu(II) complex to the CTDNA.

Ligand and Dimerization Dependent Transactivation Capability of Aromatic Hydrocarbon Receptor

  • Park, Hyun-Sung
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.279-287
    • /
    • 1999
  • The aromatic hydrocarbon receptor (AhR) is a cytosolic protein that binds the environmental pollutant, dioxin. The liganded AhR translocates into the nucleus where it heterimerizes with a constitutive nuclear protein, AhR nuclear translocator (Arnt). The N-terminal regions of both AhR and Arnt contain basic helix-loop-helix (bHLH) and Per-AhR-Arnt-Sim (PAS) motifs that are required for DNA binding, dimerization, and ligand binding whereas the C-terminal regions of both AhR and Arnt contain transactivation domains. Here, results from the mammalian two-hybrid system indicate that Arnt can make a homodimer but AhR cannot. In the presence of dioxin, the interaction between AhR and Arnt is stronger than that of the Arnt homodimer, suggesting that Arnt prefers to make a heterodimer with the liganded AhR rather than a homodimer. Transfection analyses using the GAL4-driven reporter system suggest that AhR's N-terminal region represses its own transactivation domain, as well as exogenous transactivation domains such as Sp 1 and VP16. Interestingly, the repressed transactivation domains of AhR are activated by ligand-dependent heterodimerization with Arnt. These observations suggest that heterodimerzation with Arnt is necessary not only for DNA binding but also for activation of the repressed transactivation capability of AhR.

  • PDF

Genetic Polymorphisms and Cancer Susceptibility of Breast Cancer in Korean Women

  • Kang, Dae-Hee
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • Breast cancer is the most prevalent cancer among women in Western countries, and its prevalence is also increasing in Asia. The major risk factor for breast cancer can be traced to reproductive events that influence the lifetime levels of hormones. However, a large percentage of breast cancer cases cannot, be explained by these risk factors. The identification of susceptibility factors that predispose individuals to breast cancer (for instance, if they are exposed to particular environmental agents) could possibly give further insight into the etiology of this malignancy and provide targets for the future development of therapeutics. The most interesting candidate genes include those that mediate a range of functions. These include carcinogen metabolism, DNA repair, steroid hormone metabolism, signal transduction, and cell cycle control. We conducted a hospital-based case-control study in South Korea to evaluate the potential modifying role of the genetic polymorphisms of selected low penetrance genes that are involved in carcinogen metabolisms (i.e., CYP1A1, CYP2E1, GSTM1/T1/P1, NAT1/2, etc.), estrogen synthesis and metabolism (i.e., CYP19, CYP17, CYP1B1, COMT, ER-$\alpha$, etc.), DNA repair (i.e., XRCC1/3, ERCC2/4, ATM, AGT, etc.), and signal transduction as well as others (i.e., TGF-$\beta$, IGF-1, TNF-$\beta$, IL-1B, IL-1RN, etc.). We also took into account the potential interaction between these and the known risk factors of breast cancer. The results of selected genes will be presented in this mini-review.

Effects of dietary supplementation of high-dose folic acid on biomarkers of methylating reaction in vitamin $B_{12}$-deficient rats

  • Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • Folate is generally considered as a safe water-soluble vitamin for supplementation. However, we do not have enough information to confirm the potential effects and safety of folate supplementation and the interaction with vitamin $B_{12}$ deficiency. It has been hypothesized that a greater methyl group supply could lead to compensation for vitamin $B_{12}$ deficiency. On this basis, the present study was conducted to examine the effects of high-dose folic acid (FA) supplementation on biomarkers involved in the methionine cycle in vitamin $B_{12}$-deficient rats. Sprague-Dawley rats were fed diets containing either 0 or $100{\mu}g$ (daily dietary requirement) vitamin $B_{12}/kg$ diet with either 2 mg (daily dietary requirement) or 100 mg FA/kg diet for six weeks. Vitamin $B_{12}$-deficiency resulted in increased plasma homocysteine (p<0.01), which was normalized by dietary supplementation of high-dose FA (p<0.01). However, FA supplementation and vitamin $B_{12}$ deficiency did not alter hepatic and brain S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations and hepatic DNA methylation. These results indicated that supplementation of high-dose FA improved homocysteinemia in vitamin $B_{12}$-deficiency but did not change SAM and SAH, the main biomarkers of methylating reaction.

Bioinformatics Analysis Reveals Significant Genes and Pathways to Targetfor Oral Squamous Cell Carcinoma

  • Jiang, Qian;Yu, You-Cheng;Ding, Xiao-Jun;Luo, Yin;Ruan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2273-2278
    • /
    • 2014
  • Purpose: The purpose of our study was to explore the molecular mechanisms in the process of oral squamous cells carcinoma (OSCC) development. Method: We downloaded the affymetrix microarray data GSE31853 and identified differentially expressed genes (DEGs) between OSCC and normal tissues. Then Gene Ontology (GO) and Protein-Protein interaction (PPI) networks analysis was conducted to investigate the DEGs at the function level. Results: A total 372 DEGs with logFCI >1 and P value < 0.05 were obtained, including NNMT, BAX, MMP9 and VEGF. The enriched GO terms mainly were associated with the nucleoplasm, response to DNA damage stimuli and DNA repair. PPI network analysis indicated that GMNN and TSPO were significant hub proteins and steroid biosynthesis and synthesis and degradation of ketone bodies were significantly dysregulated pathways. Conclusion: It is concluded that the genes and pathways identified in our work may play critical roles in OSCC development. Our data provides a comprehensive perspective to understand mechanisms underlying OSCC and the significant genes (proteins) and pathways may be targets for therapy in the future.

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Comprehensive Analysis of the Expression of Twenty-Seven β-1, 3-Glucanase Genes in Rice (Oryza sativa L.)

  • Hwang, Du Hyeon;Kim, Sun Tae;Kim, Sang Gon;Kang, Kyu Young
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.207-214
    • /
    • 2007
  • lant ${\beta}$-1, 3-glucanases are involved in plant defense and in development. Very little data are available on the expression of rice glucanases both in developmental tissues and under various stresses. In this study, we cloned and characterized twenty-seven rice ${\beta}$-1, 3-glucanases (OsGlu) from at total of 71 putative glucanases. The OsGlu genes were obtained by PCR from a cDNA library and were classified into seven groups (Group I to VII) according to their DNA or amino acid sequence homology. Analysis of the expression of the twenty-seven OsGlu genes by Northern blotting revealed that they were differentially expressed in different developmental tissues as well as in response to plant hormones, biotic stress, high salt etc. OsGlu11 and 27 in Group IV were clearly expressed only in stem and leaf and were also induced strongly by SA (5 mM), ABA ($200{\mu}M$), and M. grisea. OsGlu1, 10, 11, and 14 were induced earlier and to higher levels in incompatible M. grisea interaction than in compatible one. Taken together, our findings suggest that the twenty-seven rice OsGlu gene products play diverse roles not only in plant defense but also in hormonal responses and in development.