• 제목/요약/키워드: DNA immobilization

검색결과 58건 처리시간 0.026초

DNA 염기서열 분석을 위한 전기화학적 신호 검출 방법 (Electrochemical Signal Detecting Method for DNA Sequencing)

  • 조성보;홍진섭;양송주;권광민;한승오;김영미;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1869-1871
    • /
    • 2001
  • DNA 센서의 중요한 역할 중의 하나는 염기서열을 분석함으로써 유전적인 질병이나 돌연변이를 찾아낸다는 점이다. 염기서열 분석법으로 질량, 광학, 전기 화학적 측정법 등이 있는데, 그 중 전기 화학적 측정방법이 타 방법에 비해 간편하고 비용도 저렴해서 전망이 매우 밝다. 전기 화학적 측정을 위해서는 전극의 표면 처리 공정과 전극 표면에서의 DNA immobilization, hybridization 공정 및 전기적 신호를 발생시키는 intercalator, 그리고 전기적 신호 검출을 위한 측정 장비가 필요하다. 본 논문에서는 전극의 표면 처리 물질로서 2-mercaptoethanol을 사용했고 double strand DNA의 intercalator로써 methylene blue를 사용했으며, methylene blue의 환원 전류값을 측정하여 double strand DNA를 bare Au 또는 single strand DNA와 구분할 수 있었다. 이러한 연구 결과를 토대로 하여 전기 화학적 신호 검출을 이용한 DNA 센서의 가능성과 개발 방향을 제시하고자 한다.

  • PDF

담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발 (Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles)

  • 김도균;최용성;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권7호
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo;Nam, Yun-Suk;Masamichi Fujihira
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.76-85
    • /
    • 2004
  • Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

A Method for Evaluation of the Quality of DNA Microarray Spots

  • Zhang, Bao;Ma, Wen-Li;Hu, Zi-You;Shi, Rong;Song, Yan-Bin;Zheng, Wen-Ling
    • BMB Reports
    • /
    • 제35권5호
    • /
    • pp.532-535
    • /
    • 2002
  • To establish a method to evaluate the quality of the printed microarray and DNA fragments' immobilization. The target gene fragments that were made with the restriction display PCR (RD-PCR) technique were printed on a superamine modified glass slide, then immobilized with UV cross-linking and heat. This chip was hybridized with universal primers that were labeled with cy3-dUTP, as well as cDNA that was labeled with cy3-dCTP, as the conventional protocol. Most of the target gene fragments on the chip showed positive signals, but the negative control showed no signal, and vice versa. We established a method that enables an effective evaluation of the quality of the microarrays.

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.

전기화학법을 이용한 DNA Hybridization 특성 검출 (Detection of DNA Hybridization Characteristics Using Electrochemical methods)

  • 김도균;장정수;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1569-1571
    • /
    • 2002
  • The determination of DNA hybridization can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, The determination of hybridization is very important for the improvement of DNA detection system. In this study, we report the characterization of the DNA hybridization by the electricalchemical methods. A new electrochemical biosensor is described for voltammetric detection of gene sequence related to probe oligonucleotide of bacterium Escherichia coli O157:H7. The biosensor involves the immobilization of a 18-mer probe oligonucleotide, which is complemetary to a specific gene sequence related to Escherichia coli O157:H7 on a gold electrode through specific adsorption. The probe oligonucleotide was used to determine the amount of target oligonucleotide in solution using mitoxantrone(MTX) as the electrochemical indicators. The cathodic peak currents $(I_{peak})$ of MTX were linearly related to the concentration of the target oligonucleotide sequence in the range $1[{\mu}M]{\sim}0.1[nM]$. The detection limit of this approach was 0.01[nM]. In addition, these indicators were capable of selectivity discriminating against various mismatching condition.

  • PDF

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

Highly Sensitive PNA Array Platform Technology for Single Nucleotide Mismatch Discrimination

  • Choi, Jae-Jin;Jang, Min-Jeong;Kim, Ji-Hyun;Park, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.287-293
    • /
    • 2010
  • Reliable discrimination of a single nucleotide mismatch was demonstrated using arrays with peptide nucleic acid (PNA) probes. The newly developed PNA probes immobilization method and hybridization conditions for PNA arrays gave excellent specificity and sensitivity. In addition we compared the specificity, sensitivity, and stability obtained with the PNA and DNA arrays in discriminating single nucleotide mismatches. The PNA arrays had superior perfect match-to-mismatch signal ratios and sensitivities. The relative signal intensities of mismatch PNA probes ranged from 1.6% to 12.1% of the perfect-match PNA probes. These results demonstrated that the PNA arrays were 2.0 to 37.3 times more specific and about 10 times more sensitive than DNA arrays. The PNA array showed the same specificity and sensitivity after 12-month storage at room temperature.

Toxicological Investigation of Radioactive Uranium in Seawater

  • Ly, Suw-Young;Bae, Jeong-Mi;Kim, Jin
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.67-71
    • /
    • 2012
  • Trace uranium detection measurement was performed using DNA immobilized on a graphite pencil electrode(DGE). The developed probe was connected to the portable handheld voltammetric systems used for seawater analysis. The sensitive voltammogram was obtained within only 30 s accumulation time, and the anodic stripping working range was attained at 100~800 ${\mu}g/l$ U and 10~50 ${\mu}g/l$. The statistic relative standard deviation of 30.0 mg/l with the $15^{th}$ stripping was 0.2115. Here, toxicological and analytical application was performed in the seawater survey in a contaminated power plant controlling water. The results were found to be applicable for real-time toxicological assay for trace control.

방사선 그래프트 중합에 의하여 제조된 폴리(아크릴 산)이 그래프트된 탄소나노튜브에 생체분자 고정화에 관한 연구 (A Study on the Immobilization of Biomolecules on Poly(acrylic acid)-grafted MWCNTs Prepared by Radiation-Induced Graft Polymerization)

  • 정찬희;이병민;황인태;최재학;노영창;홍성권
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.150-153
    • /
    • 2010
  • 본 연구에서는 방사선에 의한 그래프트 중합을 이용하여 생체분자가 고정화된 다중벽탄소나노튜브 (MWCNT)를 제조하였다. 생체분자의 고정화를 위하여 MWCNT에 아크릴 산을 그래프트 중합하였다. 열중량분석과 라만 분석을 통하여 MWCNT에 폴리(아크릴 산)이 효과적으로 그래프트 중합되었음을 확인하였다. 폴리(아크릴 산)이 그래프트 된 MWCNT에 DNA와 단백질과 같은 생체분자들을 고정화하였다. X-선 광전자 분광법과 형광분석을 통하여 생체분자들이 성공적으로 MWCNT에 도입되었음이 확인되었다.