• 제목/요약/키워드: DNA immobilization

검색결과 58건 처리시간 0.025초

맞물린 나노전극을 가지는 마이크로 캔틸레버의 제작 및 순환전압전류방법을 이용한 DNA의 선택적인 고정화 (DNA Selective Immobilization on a Microcantilever with Nano-Interdigitated Electrodes (Nano-IDEs) Using Cyclic Voltammetry)

  • 이정아;이광철
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.459-464
    • /
    • 2008
  • We present a novel microcantilever device with nano-interdigitated electrodes (nano-IDEs) and DNA selective immobilization on the nano-IDEs for biosensing applications. Using the nano-IDEs and cyclic voltammetric methods, we have achieved selective immobilization of DNA with submicrometer spatial resolution on a freestanding microcantilever. $70{\sim}500\;nm$-wide gold (Au) nano-IDEs are fabricated on a low-stress SiNx microcantilever with dimensions of $100{\sim}600\;{\mu}m$ in length, and $15{\sim}60\;{\mu}m$ in width, with a $0.5\;{\mu}m$ thickness using electron beam lithography and bulk micromachining. Streptavidin is selectively deposited on one side of the nano-IDEs using cyclic voltammetry at a scan rate of 0.1 V/s with a range of $-0.2{\sim}0.7\;V$ during $1{\sim}5$ cycles. The selective deposition of dsDNA is confirmed by fluorescence microscopy after labeling with YOYO-1 dye.

DNA 측정용 SH-SAW 센서 개발 (Development of an SH-SAW Sensor for Detection of DNA)

  • 허영준;박유근;노용래
    • 한국음향학회지
    • /
    • 제24권3호
    • /
    • pp.160-165
    • /
    • 2005
  • 본 연구에서는 DNA의 고정화 및 DNA 혼성화 반응을 감지할 수 있는 SH형 SAW 센서를 개발하였다. 고정화 및 혼성화 반응에 사용된 탐침 DNA 및 표적 DNA는 상보적 결합이 일어날 수 있는 염기서열을 가진 15-mer의 올리고뉴클레 오티드를 사용하였다. SH형 SAW 센서는 압전 단결정 $36^{\circ}\;YX\;LiTaO_3$를 사용하여 100 MHz로 발진되는 이중 지연선 형태로 제작하였다. 제작된 센서는 Au가 증착된 박막위에 고정화된 탐침 DNA와 표적 DNA와의 혼성화 반응을 시키고 난 후 센서의 주파수 변화를 측정하였으며, DNA 고정화 및 혼성화 반응은 pH 7.4의 PBS 완충용액상에서 수행하였다. 개발된 SH형 SAW센서는 $1.55 {\cal}ng/{\cal}ml/Hz$의 민감도를 가지며, DNA 혼성화 특성에 기인한 질량하중 효과에 따른 안정적인 주파수 변화를 나타내었다.

Immobilization of Proteins on Magnetic Nanoparticles

  • Wang, Tzu-Hsien;Lee, Wen-Chien
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.263-267
    • /
    • 2003
  • Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation of Nethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticie. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the a ctivation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.

청간해울탕(淸肝解鬱湯)이 생취에 Immobilization-Stress 및 Cold-Stress 부하후(負荷後) 혈중(血中)Histamine과 Corticosterone 함량(含量) 및 면역능(免疫能)에 미치는 영향(影響) (Effects of Chungganhaewooltang on Serum Levels of Histamine and Corticosterone and Immune Response after Immobilization-Stress or Cold-Stress in Mice)

  • 강복환;정우석;김송백;유심근
    • 대한한방부인과학회지
    • /
    • 제18권4호
    • /
    • pp.85-105
    • /
    • 2005
  • Purpose : Investigate the effects of Chungganhaewooltang(CHT) on immobilization-stress or cold-stress in C576BL/6J mice. Methods : Male C57BL/6J 30 mice of weighting 18${\pm}$2g, were divided into sixs groups including the immobilization-stress group(5heads), after immobilization-stress CHT oral administration(500mg/kg) groups(5heads), cold-stress group(5heads) and after cold-stress CHT oral administration(500mg/kg) groups(5heads). then we observed changes in the serum histamine and corticosterone level and changes immune system Results : Immobilization-stress or cold-stress increased the serum level of histamine and corticosterone. CHT decreased the serum level of histamine and corticosterone increased by cold-stress. CHT inhibited the release of histamine from mast cells at the concentration of 0.1 mg/ml. In addition, immobilization-stress or cold-stress decreased the cell viability of murine thymocytes and splenocytes. CHT increased the cell viability of thymocytes decreased by immobilization-stress or cold-stress, but did not affect the cell viability of splenocytes decreased by immobilization-stress or cold-stress. Also immobilization-stress or cold-stress increased DNA fragmentation of thymocytes and splenocytes. CHT decreased DNA fragmentation of thymocytes increased by immobilization-stress or cold-stress, but did not affect DNA fragmentation of splenocytes increased by immobilization-stress or cold-stress. Immobilization-stress increased the population of thymic $CD4^+$ cells. CHT decreased the population of thymic $CD4^+$ cells increased by immobolization-stress. Immobilization-stress or cold-stress decreased the population of $B220^+$ cells and increased the population of $thy1^+$ cells. CHT decreased the population of $thy1^+$ cells increased by immobilization-stress or cold-stress. Immobilization-stress or cold-stress increased the population of splenic $CD4^+$ cells and $CD8^+$ cells. CHT decreased the population of splenic $CD4^+$ cells increased by immobolization-stress or cold-stress. Immobilization-stress or cold-stress decreased the production of ${\gamma}-interferon$(IFN) interleukin(IL)-2 and IL-4. CHT enhanced the production of ${\gamma}-IFN$ decreased by immobilization-stress or cold-stress but did not affect the production of IL-2 and IL-4 decreased by immobilization-stress or cold-stress. Furthermore, Immobilization- stress or cold-stress decreased the phagocytic activity of peritoneal macrophages and the production of nitric oxide. CHT enhanced the phagocytic activity and nitric oxide production decreased by cold-stress. Conclusion : CHT may be useful for the prevention and treatment of stress via suppression of serum histamine and corticosterone level and enhancement of immune response.

  • PDF

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.379-383
    • /
    • 2005
  • This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

2단계 고정화법을 이용한 DNA칩 마이크로어레이의 개발 (Development of DNA Chip Microarray by Using Secondary-step immobilization methods)

  • 윤희찬;김도균;신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.263-265
    • /
    • 2002
  • We have used the secondary-step immobilization methods based on the chip pattern of hydrophobic self-assembly layers to assemble microfabricated particles onto the chip pattern. Immobilization of DNA, fabrication of the particles and the chip pattern, arrangement of the particles on the chip pattern, and recognition of each using DNA fluorescence measurement were carried out. Establishing the walls, the arrangement stability of the particles was improved. Each DNA is able to distinguish by using the lithography process on the particles. Advantages of this method are process simplicity, wide applicability and stability. It is thought that this method can be applicable as a new fabrication technology to develop a minute integration type biosensor microarray.

  • PDF

비수식화 DNA를 이용한 유전자 검출 및 새로운 DNA칩의 개발 (Development of New DNA Chip and Genome Detection Using an Indicator-free Target DNA)

  • Park, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tomoji Kawai
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권8호
    • /
    • pp.365-370
    • /
    • 2003
  • This research aims to develop an indicator-free DNA chip using micro-fabrication technology. At first, we fabricated a DNA microarray by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then indicator-free target DNA was hybridized by an electrical force and measured electrochemically in potassium ferricyanide solution. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in an anodic peak current. Therefore, it is able to detect various genes electrochemically after immobilization of various probe DNAs and hybridization of indicator-free DNA on the electrodes simultaneously It suggested that this DNA chip could recognize the sequence specific genes.

Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency

  • Park, Jeong-Won;Jung, Yong-Won;Jung, Young-Hwan;Seo, Jeong-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1667-1670
    • /
    • 2004
  • In DNA microarray produced by DNA-deposition technology, DNA-immobilization and -hybridization yields on a solid support are most important factors for its accuracy and sensitivity. We have developed a dendrimeric support using silylated aldehyde slides and polyamidoamine (PAMAM) dendrimers. An oligonucleotide array was prepared through a crosslinking between the dendrimeric support and an oligonucleotide. Both DNAimmobilization and -hybridization yields on the solid support increased by the modification with the dendrimers. The increase of the immobilization and hybridization efficiency seems to result from a threedimensional arrangement of the attached oligonucleotide. Therefore, our dendrimeric support may provide a simple and efficient solution to the preparation of DNA microarrays with high-density DNA-deposition and high hybridization efficiency.

비수식화 DNA를 이용한 유전자 검출 (SNP Detection Using Indicator-free DNA Chip)

  • 최용성;문종대;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.410-411
    • /
    • 2006
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on. the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

전기화학적 방법에 의한 신규 바이오칩의 SNP 검출 (SNP Detection of Arraye-type DNA Chip using Electrochemical Method)

  • 최용성;권영수;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.410-414
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.