• Title/Summary/Keyword: DNA double strand breaks

Search Result 54, Processing Time 0.031 seconds

Roles of Budding Yeast Hrr25 in Recombination and Sporulation

  • Lee, Min-Su;Joo, Jeong Hwan;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1198-1203
    • /
    • 2017
  • Hrr25, a casein kinase $1{\delta}/{\varepsilon}$ homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Anti-apoptotic Activity of Heme Oxygenase-1 Up-regulated by Etoposide in Human Retinal Pigment Epithelial Cells (Etoposide에 의한 인간 망막색소상피세포인 ARPE-19 세포의 아폽토시스 과정에서 Heme oxygenase-1의 항아폽토시스 기능에 대한 연구)

  • Lee, Sang-Kwon;Song, Ju-Dong;Kim, Kang-Mi;Kim, Jong-Min;Lee, Sang-Yull;Yoo, Young-Hyun;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1204-1210
    • /
    • 2007
  • The topoisomerase II inhibitor etoposide causes an accumulation of DNA double strand breaks within the nuclei of cells. In this study, we investigated the effect of etoposide on the cell growth and apoptosis of human RPE cells. Etoposide evoked a significant inhibition of cell growth, and also induced DNA fragmentation in ARPE-19 cells. In addition, etoposide significantly up-regulated the expression of heme oxygenase-1 (HO-1), which is a stress-responsive protein and is known to play a protective role against the oxidative injury. And, etoposide-induced HO-1 expression was affected by the ROS scavenger N-acetyl cysteine. We also used oligonucleotides interfering with HO-1 mRNA (siRNA) for the inhibition of HO-1 expression. Interestingly, knock-down of the HO-1 gene significantly increased the level of DNA fragmentation in etoposide-treated ARPE-19 cells. In conclusion, these results suggest that up-regulated HO-1 plays as an anti-apoptotic factor in the process of apoptosis of ARPE-19 cells stimulated by etoposide.

Synthesis of 18F Labelled Isoquinoline Salt for PET Imaging (PET 영상용 18F 표지 Isoquinolinium Salt의 합성)

  • Kim, Hee Jung;Kim, Dong Yeon;Kim, In Jong;Park, Jeong Hoon;Lee, Heung Nae;Kim, Sang Wook;Hur, Min Goo;Choi, Sang Moo;Yang, Seung Dae;Yu, Kook Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of this study is to synthesize the radio fluorine labelled isoquinoline salt derivative as new radiopharmaceutical for imaging tumors using positron emission tomography (PET). The planarity of isoquinoline allows to inhibit topoisomerase or intercalate between adjacent DNA base pairs, which result in producing double strand breaks in the DNA and a cell death. Therefore, the isoquinoline has seemed to have a potential anticancer activity. In order to obtain 2-(5-[$^{18}F$]fluoropentylisoquinolinium salt with good radiochemical yield, tosylated precursors have been synthesized. The labelling reaction was carried out for 30 minute in HMPA at $120^{\circ}C$. The radiochemical yield was about 50~60%.

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

Evaluation of DNA Fragments on Boar Sperm by Ligation-mediated Quantitative Real Time PCR

  • Lee, Eun-Soo;Choi, Sun-Gyu;Yang, Jae-Hun;Bae, Mun-Sook;Park, Jin-Young;Park, Hong-Min;Han, Tae-Kyu;Hwang, You-Jin;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • Sperm chromatin integrity is essential for successful fertilization and development of an embryo. Reported here is a quantification of DNA fragments which is intimately associated with reproductive potential to provide one of criteria for sperm chromatin integrity. Three sperm populations were considered: CONTROL (no treatment), UV irradiation (48mW/$cm^2$, 1h) and $H_2O_2$ (oxidative stress induced by hydrogen peroxide, 10 mM, 50 mM and 100 mM). DNA fragments in boar sperm were evaluated by using ligation-mediated quantitative real-time polymerase chain reaction (LM-qPCR) assay, which relies on real-time qPCR to provide a measure of blunt 5' phosphorylated double strand breaks in genomic DNA. The results in agarose gel electrophoresis showed no significant DNA fragmentation and no dose-dependent response to $H_2O_2$. However, the remarkable difference in shape and position was observed in melting curve of LM-qPCR. This result supported that the melting curve analysis of LM-qPCR presented here, could be more sensitive and accurate than previous DNA fragmentation assay method.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

Selective Effects of Curcumin on CdSe/ZnS Quantum-dot-induced Phototoxicity Using UVA Irradiation in Normal Human Lymphocytes and Leukemia Cells

  • Goo, Soomin;Choi, Young Joo;Lee, Younghyun;Lee, Sunyeong;Chung, Hai Won
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • Quantum dots (QDs) have received considerable attention due to their potential role in photosensitization during photodynamic therapy. Although QDS are attractive nanomaterials due to their novel and unique physicochemical properties, concerns about their toxicity remain. We suggest a combination strategy, CdSe/ZnS QDs together with curcumin, a natural yellow pigment from turmeric, to reduce QD-induced cytotoxicity. The aim of this study was to explore a potentially effective cancer treatment: co-exposure of HL-60 cells and human normal lymphocytes to CdSe/ZnS QDs and curcumin. Cell viability, apoptosis, reactive oxygen species (ROS) generation, and DNA damage induced by QDs and/or curcumin with or without ultraviolet A (UVA) irradiation were evaluated in both HL-60 cells and normal lymphocytes. In HL-60 cells, cell death, apoptosis, ROS generation, and single/double DNA strand breaks induced by QDs were enhanced by treatment with curcumin and UVA irradiation. The protective effects of curcumin on cell viability, apoptosis, and ROS generation were observed in normal lymphocytes, but not leukemia cells. These results demonstrated that treatment with QD combined with curcumin increased cell death in HL-60 cells, which was mediated by ROS generation. However, curcumin acted as an antioxidant in cultured human normal lymphocytes.

Apoptosis Detected by in Situ DNA end-extension in Osteosarcomas - In relation to p53 and Bcl-2 expression -

  • Park, Yong-Koo;Yang, Moon-Ho;Park, Hye-Rim;Kim, Youn-Wha;Lee, Ju-Hie
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • Objective : The objective of this study was to compare expression of various proto-oncogenes and rates of apoptosis in osteosarcoma patients. Modulation of apoptosis may influence resistance to chemotherapy and therefore affect the outcome of cancer treatment. Osteosarcoma is one of the most fatal malignancies in young adolescents and investigation of the role of apoptotic cell death is warranted in relation to chemotherapy and tumor outcome. Design : The terminal deoxynucleotidyl transferase to exposed 3'-hydroxyl termini of DNA (TUNEL method) staining method has been applied for the in situ detection of DNA double strand breaks. Patients : Thirty-three osteosarcomas in various stages of differentiation from twenty-nine patients were investigated immunohistochemically for p53, Bcl-2 and TUNEL method for apoptosis. Results and conclusion; We have found that higher level of wild type p53 were correlated with enhanced expression of apoptosis. Increased apoptosis rates were found in cases of negative Bcl-2 expression. In the present study, we have concluded that a significant proportion of osteosarcoma, a tumor in which resistance to chemotherapy often occurs, express high levels of p53 and low levels of Bcl-2. Our data provide further evidence for cross-talk between Bcl-2 and p53 and suggests that these genes are important determinants of drug-induced apoptosis.

  • PDF