• Title/Summary/Keyword: DNA code

Search Result 86, Processing Time 0.026 seconds

A Review on Info-Convergence Nanohybrid System (정보 융합 나노하이브리드 시스템의 이해)

  • Jin, Wenji;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.321-330
    • /
    • 2019
  • With the rapid development trend in multidisciplinary science and convergence technology, digital data storages have been necessary in order to accumulate a huge amount of information with high security. The possibility that biological DNA code system can offer encoding and decoding information has been illustrated by many researchers. In this review, we summarized current issue of info-convergence nanohybrid system, so-called infohybrid. DNA-inorganic nanohybrid materials and devices to achieve DNA-based molecular information system are presented. The possible applications focusing on tracking-and-traceability management, authenticity verification, and nano-forensics are also reviewed with four steps of encoding, encrypting, decrypting and decoding. We also highlighted the potential of smart code system with Nano-Bio-Info-Cogno (NBIC) convergence technology through the recently published case study of Avatar DNA nanohybrid system with smart phone.

Pseudomonas 균주에 있어서 R2 Plasmid 획득에 의한 Gamma-ray 내성증강

  • 조봉금
    • Environmental Mutagens and Carcinogens
    • /
    • v.9 no.2
    • /
    • pp.111-121
    • /
    • 1989
  • Ps. aeruginosa 의 DNA repair 기구 결손변이주인 rec-, Hcr- 그리고 R931 plasmid 를 가진 R2 (Carbenicillin, Kanamycin, Streptomycin) plasmid transconjugants 가 R2 Plasmid 획득에 의해서 Gamma선 및 돌연변이제 (4NQO, NTG)에 대해서도 내성을 증강시키는지를 검토함으로써 방사선에 대한 내성화 기구를 해명하고자 했다. 그리고, DNA repair 기구에 작용하는 DNA polymerase I 생산에 관여하는 유전자가 R2 plasmid에 code 되어 있는지를 검토하여 다음과 같은 결과를 얻었다. 1) Ps. aeruginosa PAO균주의 R2 plasmid transconjugants는 R2 plasmid 획득에 의해 자외선, Gamma선 및 돌연변이제에 대한 내성을 부여받았으나 transconjugant 균주에 따라 다른 종류의 내성결과를 얻어졌다.

  • PDF

DNA Watermarking Method based on Random Codon Circular Code (랜덤 코돈 원형 부호 기반의 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.318-329
    • /
    • 2013
  • This paper proposes a DNA watermarking method for the privacy protection and the prevention of illegal copy. The proposed method allocates codons to random circular angles by using random mapping table and selects triplet codons for embedding target with the help of the Lipschitz regularity value of local modulus maxima of codon circular angles. Then the watermark is embedded into circular angles of triplet codons without changing the codes of amino acids in a DNA. The length and location of target triplet codons depend on the random mapping table for 64 codons that includes start and stop codons. This table is used as the watermark key and can be applied on any codon sequence regardless of the length of sequence. If this table is unknown, it is very difficult to detect the length and location of them for extracting the watermark. We evaluated our method and DNA-crypt watermarking of Heider method on the condition of similar capacity. From evaluation results, we verified that our method has lower base changing rate than DNA-crypt and has lower bit error rate on point mutation and insertions/deletions than DNA-crypt. Furthermore, we verified that the entropy of random mapping table and the locaton of triplet codons is high, meaning that the watermark security has high level.

Generating Malware DNA to Classify the Similar Malwares (악성코드 DNA 생성을 통한 유사 악성코드 분류기법)

  • Han, Byoung-Jin;Choi, Young-Han;Bae, Byung-Chul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.679-694
    • /
    • 2013
  • According to the national information security white paper 2013, the number of hacking attempt in 2012 is 17,570 which is increased by 67.4% than in 2011, and it has been increasing year after year. The cause of this increase is considered as pursuit of monetary profit and diversification techniques of infection. However, because the development of malicious code faster than the increase in the number of experts to analyze and respond the malware, it is difficult to respond to security threats due to malicious code. So, the interest on automatic analysis tools is increasing. In this paper, we proposed the method of malware classification by similarity using malware DNA. It helps the experts to reduce the analysis time, to increase the correctness. The proposed method generates 'Malware DNA' from extracted features, and then calculates similarity to classify the malwares.

DNA Coding Method for Evolution of Developmental Model (발생모델의 진화를 위한 DNA 코딩방법)

  • 심귀보;이동욱
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.464-467
    • /
    • 1999
  • Rapid progress in the modeling of biological structures and simulation of their development has occurred over the last few years. Cellular automata (CA) and Lindenmayer-system(L-system) are the representative models of development/morphogenesis of multicellular organism. L-system is applied to the visualization of biological plant. Also, CA are applied to the study of artificial life and to the construction of an artificial brain. To design the L-system and CA automatically, we make this model evolve. It is necessary to code the developmental rules for evolution. In this paper, we propose a DNA coding method for evolution the models of development/morphogenesis of biological multicellular organisms. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we propose the DNA coding method of CA and L-system.

  • PDF

Development of Information Biology (II)

  • Tateno, Yoshio
    • Interdisciplinary Bio Central
    • /
    • v.5 no.2
    • /
    • pp.4.1-4.3
    • /
    • 2013
  • A history of discoveries of a gene and DNA was viewed with respect to people, time and places. It started with G. Mendel and J. Meisher, who discovered a gene in a plant species in 1866 and DNA in animals in 1869, respectively. With recognition that DNA was a chemical substance, A. Kossel identified the four chemical components of DNA without knowing their biological function around the turn of the 19th century. On the other hand F. Griffith found a peculiar activity in a bacterial species in 1928, but victimized by the war before understanding what it was. Those discoveries were made in Europe, but they were still fragmentary. Then, in USA, O. T. Avery, A. Hershey, M. Nirenberg and other scientists organized the European discoveries and elucidated their coordinated biological functions in 1950's and 1960'.

Cloning of cDNA Encoding the Precursor to the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase in Pea 9Pisum sativum) (완두콩(Pisum sativum)에서 Ribulose-1,5-Bisphosphate Carboxylase Small Subunit 유전자의 cDNA 클로닝과 광유도성 발현에 관한 연구)

  • 김한집
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • Polysomal polyadenylated mRNAs which were purified from pea leaves were fractionated by sucrose grandient sedimentation. Fractions corresponding to the peak at 11.5S were found to contain mostly mRNA encoding the precursor polypeptide to the small subunit of ribulose bisphosphate carboxylase (rbcS) by in vitro translation in wheat germ extract. Double-stranded cDNA which was synthesized from the 11.5S mRNA was cloned into Hind III site of plasmid pBR 325. A cDNA clone, H24, was identified to code for rbcS. In vitro translation product of the hybridization-selected mRNA was molecular weight 20,000, presumably the precursor of rbcS. The nucleotide sequences of the H24 showed almost complete homology with the sequences encoding the transit peptide of the rbcS-3A gene which was reported by Fluhr et al.(1986).

  • PDF

Molecular Cloning and Nucleotide Sequence of Connexin 35 cDNA in the Ovary from the Sweetfish, Plecoglossus altivelis (은어, Plecoglossus altivelis 난소에서 발현하는 Connexin 35 cDNA의 해석)

  • Choi, Cheol-Young;Chang, Young-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.565-571
    • /
    • 2000
  • Mixed primers based on the high sequence homology of selected regions of known connexins (Cxs) was used for PCR reaction. A full-length connexin cDNA of sweetfish (Plecoglossus altivelis) was cloned by rapid amplification of cDNA 5'and (5'RACE) and 3'RACE method. When compared to other known Cx sequences, homology of sweetfish Cx cDNA to Atlantic croaker, Mycropogonias undulatus Cx32.7, bovine, Bos taurus Cx44 and Atlantic croaker Cx32.2 were $63.8{\%},\;61.6{\%}\;and\;56.7{\%}$, respectively. This cDNA encoded 308 amino acids (35,028 dalton) and named as sweetfish Cx35. Hydropathicity analysis of predicted amino acid sequences indicated that sweetfish Cx35 have four major hydrophobic regions and four major hydrophilic regions, suggesting its topology is similar to that of known Cxs. The presence of a tfical Cx consensus sequences were identified in each of the extracellular loops (first loop and second loop).

  • PDF

Isolation and Characterization of Eukaryotic Translation Initiation Factor 5A (eIF-5A) from Potato (감자로부터 Eukaryotic Translation Initiation Factor 5A (elF-5A) 유전자의 동정 및 발현 분석)

  • 인준교;신동호;최관삼;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.283-287
    • /
    • 2001
  • Differential display based on PCR was employed to identify genes expressed during tuber-developing stage of potato (Solanum tuberosum L. cv. Irish Cobbler). An eukaryotic initiation factor 5A (eIF-5A) clone isolated from a cDNA library constructed with developing micro-tuber using a probe of PCR fragment. We isolated three positive clones and ore of them contained open reading frame. This clone revealed high sequence similarity to tomato eIF 5A cDNA. At the DNA level, there is 94.8% identity with the tomato eIF-5A4, whereas at the protein level there is a high identity with 97.5%. The potato eIF 5A clone is 716 bp in length and contains a single open reading frame from 57 to 539 bp, a 56 bp 5'-untranslated region and a 177 bp 3'-untranslated region. The deduced protein composed of 160 amino acid residues, with a predicted molecular mass of 17.4 kD and an estimated pl of 5.5. The sequence of 12 (STSKTGKHGHAK) amino acids among eIF-5A proteins is perfectly conserved from yeast to human. That sequence in potato eIF-5A protein is also conserved at position 46 to 57 amino acid. This region embeds the post-translational modification site of the lysine residue (at the seventh K) to hypusine that is crucial to eIF-5A activity. The northern blot analysis of eIF5A has shown abundant expression, mainly in flower organs (stamen, ovary, petal, sepal), fruit and stolen.

  • PDF

Deciphering the Genetic Code in the RNA Tie Club: Observations on Multidisciplinary Research and a Common Research Agenda (RNA 타이 클럽의 유전암호 해독 연구: 다학제 협동연구와 공동의 연구의제에 관한 고찰)

  • Kim, Bong-kook
    • Journal of Science and Technology Studies
    • /
    • v.17 no.1
    • /
    • pp.71-115
    • /
    • 2017
  • In 1953, theoretical physicist George Gamow attempted to explain the process of protein synthesis by hypothesizing that the base sequence of DNA encodes a protein's amino acid sequence and, in response, proposed the nucleic acid-protein information transfer model, which he dubbed the "diamond code." After expressing interest in discussing the daring hypothesis, contemporary biologists, including James Watson, Francis Crick, Sydney Brenner, and Gunther Stent, were soon invited to join the RNA Tie Club, an informal research group that would also count biologists and various researchers in physics, mathematics, and computer engineering among its members. In examining the club's formation, growth, and decline in multidisciplinary research on deciphering the genetic code in the 1950s, this paper first investigates whether Gamow's idiosyncratic approach could be adopted as a collaborative research forum among contemporary biologists. Second, it explores how the RNA Tie Club's research agenda could have been expanded to other relevant research topics needing multidisciplinary approach? Third, it asks why and how the RNA Tie Club dissolved in the late 1950s. In answering those questions, this paper shows that analyses on the intersymbol correlation of the overlapping code functioned to integrate diverse approaches, including sequence decoding and statistical analysis, in research on the genetic code. As those analyses reveal, the peculiar approaches of the RNA Tie Club could be regarded as a useful method for biological research. The paper also concludes that the RNA Tie Club dissolved in the late 1950s due to the disappearance of the collaborative research agenda when the overlapping code hypothesis was abandoned.