• Title/Summary/Keyword: DNA break

Search Result 81, Processing Time 0.028 seconds

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Effect of Some Natural Products on the DNA Damaging Activity of 4NQO (4-nitroquinoline n-oxide) and Daunorubicin (Daunorubicin과 4NQO의 DNA damaging activity에 대한 천연물질의 영향)

  • 이완희;이행숙;권혁일;박진서;최수영;이길수
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.112-115
    • /
    • 1999
  • The action mechanism of the inhibitory effect of some natural products on the DNA strand break and DNA damage was investigated in vitro and in vivo. In the E. coli chromosomal DNA strand break experiment in vitro, three mushroom water extracts were effective on the DNA strand breaking by daunorubicin. Phellinus linteus water extract inactivated daunorubicin, a DNA strand breaking agent, but did not protect DNA from daunorubicin-induced DNA strand breaking. Agaricus blazei water extract inhibited DNA strand breaking action of daunorubicin not only by daunorubicin inactivation, but also by DNA protection from daunorubicin. An inhibitory effect of Ganoderma lucidum water extract on the DNA strand break was based on the DNA protection rather than daunorubicin inactivation. In vivo mutagen assay system (SOS-chromotest), among three mushroom water extracts Phellinus linteus water extract was the most effective one on the inhibition of DNA damage by 4-NQO. The results suggest that all three mushroom water extracts inhibit daunorubicin-induced DNA damage and in vivo DNA damaging action of 4-NQO by the reaction of mutagen inactivation or DNA protection from the mutagen.

  • PDF

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee;Gi-Sue Kang;Taerim Oh;Hye-Ju Jo;Hye-Joon Park;G-One Ahn
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.200-205
    • /
    • 2023
  • DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

Application of Single Cell Gel Electrophoresis for Detection of DNA Single Strand Breaks in DNA of Fish Blood Cell (어류혈구세포에 있어서 Single Cell Gel Electrophoresis를 응용한 DNA Single Strand Breack의 측정)

  • KIM Gi Beum;LEE Richard F.;MARUYA Keith A.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2003
  • Single-cell gel electrophoresis (comet assay) was used to detect DNA single strand break in blood cells from several marine fish species. Three fish species were collected from Georgia coastal area. Mummichog, Fundulus heteroclitus showed higher DNA damage than sea bass, Lateolabrax japonicus and trout, Oncorhynchus masou masou under the same experimental conditions. Mummichogs had more alkaline-labile sites on their DNA than other fish species. The comet assay with mummichog blood cells at pH 12.5 showed a dose-response curve with the increasing concentrations of hydrogen peroxide. While the isolated leucocytes showed no increase of DNA damage after in vitro exposure to 2-methyl-1,4-naphthoquinone (MNQ), erythrocytes showed dose-dependent DNA damage. These results indicate that the comet assay can be applied successfully as a bioassay using erythrocyte for environmental monitoring.

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

Inhibition Effects of Persicaria amphibia (L.) Delarbre on Oxidative DNA Damage via ATM/Chk2/p53 pathway

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.52-52
    • /
    • 2021
  • Persicaria amphibia as an England native plant, is a rhizomatous perennial, one of the rather amphibious plants. Its aquatic form contains water-soluble sugars, starch, and protein. P. amphibia have up to 18% tannins in stems and rhizomes. Previous studies have confirmed the anti-inflammatory activity of live bacteria roots, but no studies on bioactivity are known. DNA damage responses (DDRs) pathways are considered a crucial factor affecting the alleviation of cellular damage. The ataxia-telangiectasia mutated and Rad3 related (ATM) and checkpoint kinase 2 (Chk2) pathways are the main pathways of DNA damage response. Also, p53 is a key integrator of cellular response to oxidative DNA damage, contributing repair, or leading transcription including apoptosis. In the present study, we conducted an investigation into the inhibitory effects of P. amphibia on oxidative DNA damage for confirming potential to complementary medicine and therapies. In conclusion, P. amphibia can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage.

  • PDF

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Effect of ionizing radiation on cultured submandibular gland (SG) cells of mouse (전리 방사선 조사에 의한 마우스 배양 악하선 세포의 변화)

  • Lee, Song-Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.4 no.1
    • /
    • pp.71-77
    • /
    • 1990
  • The present study was undertaken to investigate effects of ionizing radiation on DNA synthesis and chromosomal abnormality in cultured submandibular gland(SG) cells. SG cells from C57BL/6N Crj mice were cultured in Dulbecco's modified Eagle's medium (DME) supplemented with $10\%$ fetal bovine serum, antibiotics and fungizone. The cultured SG cells were irradiated with graded doses of gamma ray ($^{60}Co$) at a dose rate of 58.4rad/min. The effect of irradiation of $^{60}Co$ on DNA synthesis in cultured cells was evaluated by measuring the incorporation of 3H-TdR. Using conventional chromosome techniques and Giemsa staining methods, chromosomal abnormalities in cultured SG cells, induced by irradiation of $^{60}Co$ werw examined. Cytological observations were carried out by a light microscope with high resolving power. The results obtained were as follows : 1. DNA synthesis of SG cells was quantitatively dependent on a radiation dose compare to control. 2. A polyploids and few chromosome-type break, such as single and double breaks, deltions and triradial figures were more predominantly in irradiated SG cells than in control. This increase of chromosomal abnormality was in the proposition to the irradiation doses.

  • PDF

Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups

  • Areeshi, Mohammed Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7091-7094
    • /
    • 2013
  • DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

Ser1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs

  • Lee, Jung-Hee;Cheong, Hyang-Min;Kang, Mi-Young;Kim, Sang-Young;Kang, Yoon-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • 53BP1 is an important genome stability regulator, which protects cells against double-strand breaks. Following DNA damage, 53BP1 is rapidly recruited to sites of DNA breakage, along with other DNA damage response proteins, including ${\gamma}$-H2AX, MDC1, and BRCA1. The recruitment of 53BP1 requires a tandem Tudor fold which associates with methylated histones H3 and H4. It has already been determined that the majority of DNA damage response proteins are phosphorylated by ATM and/or ATR after DNA damage, and then recruited to the break sites. 53BP1 is also phosphorylated at several sites, like other proteins after DNA damage, but this phosphorylation is not critically relevant to recruitment or repair processes. In this study, we evaluated the functions of phosphor-53BP1 and the role of the BRCT domain of 53BP1 in DNA repair. From our data, we were able to detect differences in the phosphorylation patterns in Ser25 and Ser1778 of 53BP1 after neocarzinostatin-induced DNA damage. Furthermore, the foci formation patterns in both phosphorylation sites of 53BP1 also evidenced sizeable differences following DNA damage. From our results, we concluded that each phosphoryaltion site of 53BP1 performs different roles, and Ser1778 is more important than Ser25 in the process of DNA repair.