• Title/Summary/Keyword: DNA 손상

Search Result 546, Processing Time 0.028 seconds

Effect of Baegieum(BGU) on Oxidant induced cell death in human intestinal epithelial cells (배기음(排氣飮)이 인간(人間)의 장관(腸管) 상피세포(上皮細胞)에서 Oxidant에 의해 유발(誘發)된 세포사망(細胞死亡)과 DNA 손상(損傷)에 미치는 영향)

  • Kim, Woo-Hwan;Kim, Won-Ill
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • 목적 : 본(本) 연구(硏究)는 배기음(排氣飮)이 인간(人間)의 장관내(腸管內)에서 산화물(酸化物)에 의해 유발(誘發)된 세포(細胞)의 사망(死亡) 및 DNA의 손상(損傷)을 방지할수 있는지를 검증(檢證)하기 위한 실험(實驗)이다. 방법 : 배양(培養)된 인체장관(人體腸管) 세포계열(細胞系列)인 Caco-2 세포(細胞)에서 세포(細胞)의 사망(死亡)은 trypan bile의 소실정도에 의해서 평가했으며, DNA의 손상(損傷)은 double stranded DNA의 파괴정도를 측정하여 평가하였다. $H_2O_2$는 표본(標本) 산화제(酸化劑)로 사용되었다. 결과 : $H_2O_2$에 노출된 세포들의 세포사망(細胞死亡) 정도는 노출시간과 용량에 비례하여 증가하는 양상을 보였다. 배기음(排氣飮)은 $H_2O_2$에 의해 유발(誘發)되는 세포방지를 방지하였고, 0.05-1%의 농도범위에 걸쳐서는 그 효과가 용량에 비례하여 증가하는 양상을 보였다. $H_2O_2$에 의해 유발(誘發)된 세포손상(細胞損傷)은 catalase(hydrogen peroxide scavenger enzyme)와 deferoxamine(iron chelator)에 의해 억제되었다. 그러나 강력한 항산화제(抗酸化劑)인 DPPD는 $H_2O_2$에 의해 유발(誘發)되는 세포손상(細胞損傷)에는 영향을 주지 못했다. $H_2O_2$에 의해 유발(誘發)된 지질(脂質)의 과산화(過酸化)는 배기음(排氣飮)과 DPPD에 의해 억제되었다. $H_2O_2$에 의해 유발(誘發)된 DNA의 손상(損傷)은 배기음(排氣飮)에 의해 방지되었으며 용량에 의존하는 양상을 보였다. $H_2O_2$에 의해 유발(誘發)된 DNA의 손상은 catalase와 deferoxamine에 의해 억제되었지만 DPPD는 억제시키지 못했다. 배기음(排氣飮)은 $H_2O_2$에 의해 유발(誘發)된 ATP의 소실을 회복시켰다. 이러한 실험결과 $H_2O_2$에 의해 유발(誘發)된 세포(細胞)의 손상(損傷)은 지질(脂質)의 과산화(過酸化)와는 다른 독립적인 기전에 의해 일어남을 나타낸다. 결론 : 이러한 결과들로 볼 때 Caco-2 세포(細胞)에서 배기음(排氣飮)이 항산화작용(亢酸化作用)보다는 다른 기전을 통하여 Caco-2 세포안에서 산화제(酸化劑)에 의해 유발(誘發)된 세포(細胞)의 사망(死亡)와 DNA의 손상(損傷)을 방지할 수 있다는 것을 가리킨다. 따라서 본 연구(硏究)는 배기음(排氣飮)이 반응성산소기(反應性酸素基)에 의해 매개된 인체(人體) 위장관질환(胃腸管疾患)의 치료(治療)에 사용할 수 있을 가능성(可能性)이 있음을 제시하고 있다.

  • PDF

Oxidative Stress in Spermatozoa during Boar Semen Storage (돼지 정액을 저장하는 동안 정자에 미치는 산화스트레스)

  • Seunghyung Lee
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.586-592
    • /
    • 2023
  • Oxidative stress is a critical factor affecting the quality and viability of sperm during boar semen storage. Oxidative stress is also a significant concern during the process of freezing semen. The process of semen storage involves exposing the sperm to various stressors, including temperature changes, cryoprotectants, and extended periods of incubation. In addition, oxidative stress can lead to the production of reactive oxygen species (ROS) within the sperm, resulting in oxidative damage to cellular components, such as lipids, proteins, and DNA. Striking a balance between ROS production and the antioxidant defense system is crucial for maintaining sperm viability and functionality during semen storage. Moreover, the prolonged storage of boar semen leads to an increase in ROS levels, which can impair sperm motility, membrane integrity, and DNA integrity. ROS-induced lipid peroxidation affects the fluidity and stability of sperm membranes, leading to decreased sperm motility. Moreover, oxidative damage to the DNA can result in DNA fragmentation, compromising the genetic integrity of the sperm. In conclusion, oxidative stress is a significant challenge in maintaining sperm quality during boar semen storage. Understanding the mechanisms underlying oxidative stress and their impacts on sperm function is crucial for developing effective strategies to minimize oxidative damage and improve sperm storage outcomes.

Evaluation of protective effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes in the single cell gel electrophoresis assay (단세포 겔 전기영동법을 이용한 사람 림프구 DNA 손상에 대한 복숭아씨 추출물의 방사선 방어효과 평가)

  • Kim, Jin-Kyu;Park, Tae-Won;Lee, Chang-Joo;Chai, Young-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 1999
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to the detection of DNA damage from a number of chemical and biological factors in vivo and in vitro. The comet assay is a novel method to assess DNA single-strand breaks, alkali-labile sites in individual cells. The effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes was evaluated by the SCGE assay. The lymphocytes, with or without pretreatment of the extracts, were exposed to 0, 0.1, 0.3, 0.5, 1.0 and 2.0 Gy of $^{60}Co$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in the comet assay, showed an excellent dose-response relationship. The treatment of the peach kernel extracts reduced the DNA damage by 30 % in irradiated groups as compared to that in non-treated control groups. The result indicates that the extracts shows radioprotective effect on lymphocyte DNA when assessed by the comet assay.

  • PDF

Protective Role of Curcuma longa L. Extracts on Hydrogen Peroxide-Induced DNA Damage in Human Leukocytes (산화적 스트레스로 유도된 인체 백혈구 DNA 손상에 대한 울금 추출물의 보호효과)

  • Seo, Bo-Young;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.545-551
    • /
    • 2017
  • Curcuma longa L. (CL) is widely used as a spice and coloring agent in several foods, such as curry and mustard, as well as cosmetics and drugs. In this study, we investigated the protective effects of CL extracted with various solvents [methanol (MC), ethanol (EC), acetone (AC)] on $H_2O_2-induced$ DNA damage in human leukocytes along with total polyphenol contents (TPC) and antioxidant properties. The antioxidant effects of CL were determined by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and superoxide dismutase (SOD)-like activity. The preventive effect of CL on oxidative stress-induced DNA damage and DNA repair capacities were assessed using comet assay. MC showed the highest TPC (11.17 g gallic acid equivalents/100 g) and antioxidant properties among the solvent extracts. The $SC_{50}$ for DPPH RSA was MC: 35.0 > AC: 45.8 > EC: $57.8{\mu}g/mL$ and SOD-like activity was MC: 46.6 > EC: 141.5 > AC: $296.4{\mu}g/mL$. In the comet assay, the $ED_{50}$ value of MC showed the highest inhibition ($86.7{\mu}g/mL$) of $H_2O_2-induced$ DNA damage, followed by AC ($110.0{\mu}g/mL$) > EC ($115.8{\mu}g/mL$). Analysis of the percentage of damaged cells showed that repair capacity significantly decreased at 4, 8, and 12 h from $H_2O_2-induced$ oxidative stress in each extract. After 12 h, level of DNA damage recovery was similar to the negative control level. These results suggest that CL has potential antioxidant activity and a protective effect against oxidation-induced DNA damage, and the methanol extract of CL was the most effective.

DNA Repair Characteristics of MRC-5 and SK-N-SH Irradiated with Proton Beam (양성자빔 조사에 따른 MRC-5와 SK-N-SH의 DNA 손상 후 회복 특성)

  • Choi, Eun-Ae;Lee, Bong-Soo;Cho, Young-Ho
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • The purpose of this study is to compare DNA repair characteristics of normal fibroblast cell (MRC-5) and neuroblastoma cell (SK-N-SH) induced by proton beam. Cells were irradiated with 2Gy, 5Gy and 8Gy proton beam. The rate of DNA rejoining was measured by alkaline version of the comet assay. After a repair time, tail moment was measured again. The tail moment of MRC-5 was lower than SK-N-SH. However, after 8Gy of exposure, the tail moment of MRC-5 was measured as 50.320223.17155 which represents dangerous level of DNA damage. The cells were repaired practically within 25 hours after 2 and 5Gy of exposure while they were not fully recovered after 8Gy of exposure. Especially, tail moment of MRC-5 after 25 hours was 18.15364.42849. In the distal declining edge of SOBP, the RBE value is increased by high LET. The RBE differences of SOBP in high-dose were greater than low-dose. After the high-dose exposure, MRC-5 of normal fibroblast cell could lead to lasting DNA damage as shown in this study. In conclusion, we has to pay special attention when the region of the treatment volume is close to sensitive tissues.

Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구)

  • Lee, Sang-Jae;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.87-94
    • /
    • 2015
  • High voltage pulsed electric fields (PEF) treatment is one of the more promising nonthermal technologies to fully or partially replace thermal processing. The objective of this research was to investigate the microbial inactivation mechanisms of PEF treatment in terms of intra- and extracellular changes in the cells. Saccharomyces cerevisae cells treated with PEF showed cellular membrane damage. This resulted in the leakage of UV-absorbing materials and intracelluar ions, which increased with increasing treatment time and electric fields strength. This indicates that PEF treatment causes cell death via membrane damage and physical rupture of cell walls. We further confirmed this by Phloxine B staining, a dye that accumulates in dead cells. Using scanning and transmission electron microscopy, we observed morphological changes as well as disrupted cytoplasmic membranes in PEF treated S. cerevisae cells. In addition, PEF treatment led to damaged chromosomal DNA in S. cerevisiae.

DNA Repair Synthesis Induced by Bleomycin in HeLa $S_3$ Cells Pretreated with Base Analogs (鹽基相似體를 前處理한 HeLa $S_3$ 細胞에 있어 Bleomycin에 의한 DNA 回復合成)

  • Um, Kyung-Il;Park, Sang-Dai
    • The Korean Journal of Zoology
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 1977
  • Dose response of DNA repair synthesis induced by bleomycin was dose-dependent in lower doses, and maximum rate of it at 5 $\\mu$g/ml represents about 15% of total cells analyzed. At higher doses DNA-repair synthesis was reduced and the rate of it remained unchanged even prolonged treatment. Pretreatment with BUdR or IUdR was found to enhance DNA repair synthesis and also to interfere with semiconservative DNA synthesis at higher doses. Time dependence study showed that DNA repair synthesis occurred as long as for 24 hours after removal of bleomycin. These results seem to suggest that bleomycin is not to be an effective chemical in inducing excision repair and that damages induced in DNA by this drug might include not only strand breaks but other types of DNA damage.

  • PDF

Biological effects of ginseng petroleum extract on hydrogen peroxide induced lipid peroxidation and oxidative DNA damage

  • 김영진;권영주;신경승;김수희;허문영
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.105-105
    • /
    • 1997
  • Reactive oxygen species(ROS)에 의한 세포독성이나 DNA손상은 노화와 암에 밀접한 관련이 있다. 본연구에서는 ROS중 hydroxyl radical 생성에 관여되는 $H_2O$$_2$에 의해 유도되는 산화적 세포독성이나 DNA손상에 억제적으로 작용할 수 있는 천연물을 창출하기 위한 연구를 하였다. 인삼(Panax Ginseng)C.A. Meyer의 석유에텔의 추출물(GPE)과 일부분획성분(P2)에 대하여 in vitro에서 지질과산화억제효과 및 프리라디칼소거효과를 시험하고 CHL Cell에서의 $H_2O$$_2$ 유도 세포독성과 산화적 DNA손상에 미치는 영향을 연구하였다. 한편 이들 물질을 기존의 항산화제인 ascorbic acid, dl-$\alpha$-tocopheorl 및 $\beta$-carotene등과 비교하였다.

  • PDF

Effects of Yuldahansotang after kainate administration in the mouse hippocampus area (열다한소탕(熱多寒少湯)이 kainic acid에 의해 유발된 mouse의 해마체 손상에 미치는 영향)

  • Kim, Il-hwan;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.283-299
    • /
    • 1999
  • 1. Purpose : Systemic injection of kainic acid in experimental animals induces the limbic seizure and structural damages in hippocampus and amygdala which resembles the changes in human temporal lobe epilepsy. The author performed this study to investigate the neuroprotective effects of Yuldahansotang, on the neurotoxicity induced by kainic acid in the hippocampus in rats. 2. Method : Kainic acid was administered intraperitoneally. And feeding with Yuldahansotang for 3 weeks after kainic acid administration. Seizure were induced in male mice (kainate 10-40 mg/kg i.p) and animals were sacrified at various time-points after injection. The experimental animals were sacrificed at 1, 2, 3day and 1, 3weeks while Yuldahansotang administrations. Seizure were graded using a behavioral scale developed in our laboratory. c-fos belong to immediate early genes(IEGs) known to have rapid and brief responses. And neuronal injury was assayed by examining DNA fragmentation using in situ nick translation histochemistry. 3. Results & Conclusion : Seizure severity paralled kainate dosage. At higher doses DNA fragmentation is seen mainly in hippocampus in area CA3, and variable in CA1, thalamus, amygdala within 24 h, is maximal within 72 h, and is large gene by 7 days after administration of kainate. And we can't see the expression of DNA fragmentation and c-fos in the mice what feeded by Yuldahansotang after 7 days from kainic acid administration. It is consequently suggested that Yuldahansotang may attenuate the kainic acid-induced neuronal degeneration and increase the immunoreactivity of hippocampus in mouse.

  • PDF

The Relationship of the Expressions of Stress-related Markers and Their Production Performances in Korean Domestic Chicken Breed (닭의 스트레스 연관 표지인자들의 발현도와 생산능력 간의 상관 분석)

  • Park, Ji Ae;Cho, Eun Jung;Choi, Eun Sik;Hong, Yeong Ho;Choi, Yeon Ho;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.3
    • /
    • pp.177-189
    • /
    • 2016
  • This study was conducted to verify the relationships between the expression values of stress-related markers and their production performances in 25 strains of Korean domestic chicken breeds. For stress response markers, the amount of telomeric DNA; expression levels of heat shock protein (HSP)-70, $HSP-90{\alpha}$, and $HSP-90{\beta}$; and comet scores were analyzed. Production performances were measured by the survival rate, body weights, days at first egg laying, egg weight and hen housed egg production. The results showed that the production traits and values of stress-related markers showed significant differences between strains. In general, the stress response of pure bred chickens with heavy weights was relatively high, while that of hybrid chickens with light weights was relatively low. The correlation coefficients between telomere contents and body weights showed that there were weak negative relationships. However, the correlations of telomere content with the survival rate and egg production were weakly positive after 20 weeks old. The expression levels of HSP genes and DNA damage rate (comet scores) were positively correlated to body weight, but were negatively correlated to the survival rate and egg production. The results implied that increasing body weight was associated with increasing HSPs expression and the DNA damage rate was associated with decreasing telomere content. In addition, increasing HSPs expression and the DNA damage rate decreased the survival rate and egg production, but the relationships with the telomere content was the reverse. Correlations among the stress-related markers showed that there were significant correlation coefficients between all of the marker values. HSPs expression was negatively correlated to the telomere content, while it was positively correlated to the DNA damage rate. There was a highly negative correlation between the telomere content and DNA damage rate. In conclusion, increasing the HSP values and DNA damage rate can promote telomere reduction, which led to a decrease in disease resistance and robustness of the chicken. Thus, increasing the stress response was verified to adversely affect the laying performance and viability of chickens.