Effect of Baegieum(BGU) on Oxidant induced cell death in human intestinal epithelial cells

배기음(排氣飮)이 인간(人間)의 장관(腸管) 상피세포(上皮細胞)에서 Oxidant에 의해 유발(誘發)된 세포사망(細胞死亡)과 DNA 손상(損傷)에 미치는 영향

  • Kim, Woo-Hwan (Dept. of Internal Medicine, College of Oriental Medicine Dongeui University) ;
  • Kim, Won-Ill (Dept. of Internal Medicine, College of Oriental Medicine Dongeui University)
  • 김우환 (동의대학교 한의과대학 비계내과학교실) ;
  • 김원일 (동의대학교 한의과대학 비계내과학교실)
  • Published : 2000.08.30

Abstract

목적 : 본(本) 연구(硏究)는 배기음(排氣飮)이 인간(人間)의 장관내(腸管內)에서 산화물(酸化物)에 의해 유발(誘發)된 세포(細胞)의 사망(死亡) 및 DNA의 손상(損傷)을 방지할수 있는지를 검증(檢證)하기 위한 실험(實驗)이다. 방법 : 배양(培養)된 인체장관(人體腸管) 세포계열(細胞系列)인 Caco-2 세포(細胞)에서 세포(細胞)의 사망(死亡)은 trypan bile의 소실정도에 의해서 평가했으며, DNA의 손상(損傷)은 double stranded DNA의 파괴정도를 측정하여 평가하였다. $H_2O_2$는 표본(標本) 산화제(酸化劑)로 사용되었다. 결과 : $H_2O_2$에 노출된 세포들의 세포사망(細胞死亡) 정도는 노출시간과 용량에 비례하여 증가하는 양상을 보였다. 배기음(排氣飮)은 $H_2O_2$에 의해 유발(誘發)되는 세포방지를 방지하였고, 0.05-1%의 농도범위에 걸쳐서는 그 효과가 용량에 비례하여 증가하는 양상을 보였다. $H_2O_2$에 의해 유발(誘發)된 세포손상(細胞損傷)은 catalase(hydrogen peroxide scavenger enzyme)와 deferoxamine(iron chelator)에 의해 억제되었다. 그러나 강력한 항산화제(抗酸化劑)인 DPPD는 $H_2O_2$에 의해 유발(誘發)되는 세포손상(細胞損傷)에는 영향을 주지 못했다. $H_2O_2$에 의해 유발(誘發)된 지질(脂質)의 과산화(過酸化)는 배기음(排氣飮)과 DPPD에 의해 억제되었다. $H_2O_2$에 의해 유발(誘發)된 DNA의 손상(損傷)은 배기음(排氣飮)에 의해 방지되었으며 용량에 의존하는 양상을 보였다. $H_2O_2$에 의해 유발(誘發)된 DNA의 손상은 catalase와 deferoxamine에 의해 억제되었지만 DPPD는 억제시키지 못했다. 배기음(排氣飮)은 $H_2O_2$에 의해 유발(誘發)된 ATP의 소실을 회복시켰다. 이러한 실험결과 $H_2O_2$에 의해 유발(誘發)된 세포(細胞)의 손상(損傷)은 지질(脂質)의 과산화(過酸化)와는 다른 독립적인 기전에 의해 일어남을 나타낸다. 결론 : 이러한 결과들로 볼 때 Caco-2 세포(細胞)에서 배기음(排氣飮)이 항산화작용(亢酸化作用)보다는 다른 기전을 통하여 Caco-2 세포안에서 산화제(酸化劑)에 의해 유발(誘發)된 세포(細胞)의 사망(死亡)와 DNA의 손상(損傷)을 방지할 수 있다는 것을 가리킨다. 따라서 본 연구(硏究)는 배기음(排氣飮)이 반응성산소기(反應性酸素基)에 의해 매개된 인체(人體) 위장관질환(胃腸管疾患)의 치료(治療)에 사용할 수 있을 가능성(可能性)이 있음을 제시하고 있다.

Keywords

References

  1. Drugs v.42 Drug antioxidant effects-a basis for drug selection? Halliwell, B.
  2. J. Biol. Chem. v.191 Generation of superoxide anion by the NADH dehydrogenase of boveine beart mitochondira Turrens, J.F.;Boveris, A.
  3. N. Eng. J. Med. v.320 Tissue destruction by neutrophils Weiss, S.J.
  4. Gastro-enterology v.81 Superoxide radicals and feline intestinal ischemia Granger, D.N.;Rutili, G.;McCord, J.M.
  5. Gasstroenterology v.94 5-Aminosalicilic acid protect against ischemia, reperfusion-induced gastric bleeding in the rat Kvietys, P.R.;Simth, S.M.;Grisham, M.B.;Manci, E.A.
  6. Gastroenterology v.106 Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine Nilsson, U.A.;Schoenberg, M.H.;Aneman, A.;Poch, B.;Magadum, S.;Beger, H.G.;Lundgren, O.
  7. Dig. Dis. Sic. v.33 Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats Szelenyi, I.;Brune, K.
  8. Am. J. Physiol. v.258 Role of oxygen radiclas in ethanol-induced damage to cultured gastric mucosal cells Mutoh, H.;Hiraishi, H.;Ota, S.;Ivey, K.J.;Terano, A.;Sugimoto, T.
  9. Am. J. Physiol. v.261 Role of oxygen-derived free radicals in indomethacin-induced gastric injury Vaananen, P.M.;Meddings, J.B.;Wallace, J.L.
  10. Am. J. Physiol. v.276 Qiu, B.;Pothoulakis, C.;Castagliuolo, I.;Nikulasson, S.;LaMont, J.T.
  11. Am. J. Pathol. v.130 Contribution of oxygen-derived free radicals to experimental necrotizing entero-colitis Clark, D.A.;Fornabaio, D.M.;McNeill, H.;Mullane, K.M.;Caravella, S.J.;Miller, M.J.
  12. Gut. v.29 Role of oxygen derived free radicals in platelet activating factor induced bowel necrosis Cueva, J.P.;Hsueh, W.
  13. Gastroenterology v.97 Neutrophil-derived oxidants formyl-methionyl-leucyl-phenylalanine-induced increase in mucosal permeability in rats Von Ritter, C.;Grisham, M.B.;Hollwarth, M.;Inauen, W.;Granger, D.N.
  14. Gut. v.31 Role of reactive oxygen metabolites in experimental colitis Keshavarzian, A.;Morgan, G.;Sedghi, S.;Gordon, J.H.;Doria, M.
  15. Res. Exp. Med. v.91 The effect of antioxidant therapy on colonic inflammation in the rat Yavuz, Y.;Yuksel, M.;Yegen, B.C.;Alican, I.
  16. J. Clin. Invest. v.77 Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation Craven, P.A.;Pfanstiel, J.;DeRubertis, F.R.
  17. Gut. v.25 Macrophage activation, chronic inflammation and gastrointestinal disease Tanner, A.R.;Arthur, M.J.;Wright, R.
  18. Clin. Sci. v.69 The role of phagocytes in inflammatory bowel disease Hermanowicz, A.;Gibson, P.R.;Jewell, D.P.
  19. Hepatogastroenterology v.45 Mediators of inflammation, production and implication in inflammatory bowel disease Kolios, G.;Petoumenos, C.;Nakos, A.
  20. Dig. Dis. Sci. v.42 Protection against chemically-induced oxidative gastrointestinal tissue injury in rats by bismuth salts Bagchi, D.;Carryl, O.R.;Tran, M.X.;Bagchi, M.;Vuchetich, P.J.;Krohn, R.L.;Ray, S.D.;Mitra, S.;Stohs, S.J.
  21. Dig. Dis. Sci. v.43 Protection by rebamipide against acetic acid-induced colitis in rats Sakurai, K.;Osaka, T.;Yamasaki, K.
  22. Chinese medical science history Hong, Won-Sik
  23. Byongjyungjinchi Sin, Chun-Ho
  24. J. Pharmacol. Exp. Ther. v.290 Transport characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells, Contribution of pH-dependent transport system Mizuuchi, H.;Katsura, T.;Saito, H.;Hashimoto, Y.;Inui, K.I.
  25. Am. J. Physiol. v.277 Transport of thiamine in human intestine, mechanism and regulation in intestinal epithelial cell model Caco-2 Said, H.M.;Ortiz, A.;Kumar, C.K.;Chatterjee, N.;Dudeja, P.K.;Rubin, S.
  26. Environ. Mol. Mutagen v.11 DNA precipitation assay, a rapid and simple method for detecting DNA damage in mammalian cells Olive, P.L.
  27. Anal. Biochem. v.86 Determination of malonaldehyde precursor in tissues by thiobarbituric acid test Uchiyama, M.;Mihara, M.
  28. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M.M.
  29. Am. J. Physiol. v.277 Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells Filipovic, D.M.;Meng, X.;Reeves, W.B.
  30. Ree Radic Biol Med. v.12 Role of reactive oxygen species in intestinal diseases Van der Vliet, A.;Bast, A.
  31. Human Medical agents from Plants(ACS symposium Series No.534) Plant-derived natural products in drug discovery and development, An overview Balandrin, M.F.;Kinghorn, A.D.;Farmsworth, N.R.;Kinghorn, A.D.(ed.);Balandrin, M.F.(ed.)
  32. Biochem Pharmacol. v.53 Plant-derived anticancer agents Pezzuto, J.M.
  33. Lab. Invest. v.57 Source of iron neutrophil-mediated killing of endothelial cells Gannon, D.E.;Varani, J.;Phan, S.H.;Ward, J.H.;Kaplan, J.;Till, G.O.;Simon, R.H.;Ryan, U.S.;Ward, P.A.
  34. Lab. Invest. v.54 Mediation of IgA induced lung injury in the rat. Role of macrophages and reactive oxygen products Johnson, K.J.;Ward, P.A.;Kunkel, R.G.;Wilson, B.S.
  35. Am. J. Pathol. v.119 Lipid peroxidation and acute lung injury after thermal trauma to skin Till, G.O.;Hatherill, J.R.;Tourtellotte, W.W.;Lutz, M.J.;Ward, P.A.
  36. Arch. Biochem. Biophys v.246 Oxygen free radicals and iron in relation to biology and medicine, Some problems and concepts Halliwell, B.;Gutteridge, J.M.C.
  37. J. Free Rad. Biol. Med. v.1 Role of metals in oxygen radical reactions Aust, S.D.;Morehouse, L.A.;Thomas, C.E.
  38. Lab. Invest. v.62 Biology of disease, Mechamisms of cell injury by activated oxygen species Farber, J.L.;Kyle, M.E.;Colemen, J.B.
  39. Arch. Biochem. Biophys. v.269 tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids Masaki, N.;Kyle, M.E.;Farber, J.L.
  40. Toxicol. Appl. Pharmacol. v.78 Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes Rush, G.F.;Gorski, J.R.;Ripple, M.G.;Sowinski, J.;Bugelski, P.;Hewitt, W.R.
  41. Am. J. Physol. v.268 Role of lipid peroxidation in $H_2O_2$-induced renal epithelial (LLC-$PK_1$) cell injury Salahudeen, A.K.
  42. Arch. Biochem. Biophys. v.284 Inhibition of iodoacetamide and t-butylhydroper-oxide toxicity in LLC-$PK_1$ cells by antioxidants, A role for lipid peroxidation in alkylation induced cytotoxicity Chen, Q.;Stevens, J.L.
  43. Toxicol. Appl. Pharmacol. v.141 Defferential effect of $Ca^{2+}$ on oxidant-induced lethal cell injury and alterations of membrane transport functional integrity in renal cortical slices Kim, Y.K.;Kim, Y.H.
  44. Lab. Invest. v.69 Cell and tissue response to oxidative damage Janssen, Y.M.;Houten, B.V.;Borm, P.J.A.;Mossman, B.T.
  45. Kid. Int. v.45 Effect of pyruvate on oxidant injury to isolated and cellular DNA. Nath, K.A.;Enright, H.;Nutter, L.;Fischereder, M.;Zou, J.N.;Hebbel, R.P.
  46. Am. J. Physol. v.263 Role of intracellular calcium in hydrogen peroxide-induced renal tubular cell injury Ueda, N.;Shah, S.V.
  47. J. Clin. Invest. v.82 Oxidant-induced DNA damage of target cells Schraufstatter, I.;Hyslop, P.A.;Jackson, J.H.;Cochrane, C.G.
  48. Am. J. Physiol. v.272 Dissociation of oxidant-induced ATP depletion and DNA damage from early cytotoxicity in ${LLC-PK_1}$ cells Andreoli, S.P.;Mallett, C.P.
  49. FEBS Lett. v.373 Oxidative DNA damge by t-butyl hydroperoxide causes DNA single strand beaks which is not linked to cell lysis. A mechamisric study in freshly isolated rat hepatocytes Lautour, I.;Demoulin, J.B.;Buc-Calderon, P.
  50. Pediatr. Res. v.25 Mechanisms of endothelial cell ATP depeltion after oxidant injury Andreoli, S.P.