• Title/Summary/Keyword: DM content

Search Result 691, Processing Time 0.027 seconds

Comparison of Forage Quality, Productivity and β-carotene Content according to Maturity of Forage Rye (Secale cereale L.)

  • Zhao, Guo Qiang;Wei, Sheng Nan;Li, Yan Fen;Jeong, Eun Chan;Kim, Hak Jin;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.123-130
    • /
    • 2020
  • These experiments were to investigate the variations of rye on forage quality, productivity and β-carotene concentration affected by maturity in Pyeongchang region. Limited information are available about how forage quality and β-carotene content are affected by various factors. Samples were collected from rye harvested every 5 days, from April 25 to May 31 (April 25, April 30, May 4, May 9, May 15, May 21, May 25 and May 31). Dry matter (DM) content, plant height, DM yield and total digestible nutrient (TDN) yield increased continuously with the progressed maturity. However, crude protein (CP) content, in vitro dry matter digestibility (IVDMD) and relative feed value (RFV) decreased markedly with the delay of harvesting, while TDN content decreased from April 25 till May 15, then followed by a stable fluctuation. Conversely, acid detergent fiber (ADF) and neutral detergent fiber (NDF) value increased and then fluctuated slightly after blooming stage. For quality of plant parts, stem contained the lowest CP content and RFV value, and the highest ADF and NDF contents compared with other parts, while the grain showed the higher CP, IVDMD, RFV and lower fiber contents than others. With the plant matured, leaf proportion decreased while stem and grain proportion increased, and feed value of all the three parts decreased till blooming stage and followed by a stable phase. β-carotene concentration showed its highest on jointing stage, and then fell down sharply on the sequential stages. In conclusion, harvest around May 15 (blooming) is proper for forage rye if directly consumed by livestock as green chop in Pyeongchang under the consideration of both nutritive yield and forage quality.

QTL Mapping for Protein Content Derived from a Cross between oryza sativa and Weedy Rice

  • Ju-Won Kang;Ji-Yoon Lee;Gi-Un Seong;Youngho Kwon;So-Myeong Lee;Dong Jin Shin;Sais-Beul Lee;Hyunnggon Mang;Dong Soo Park;Jong-Hee Lee;Jun-Hyeon Cho;Gi-Won Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.268-268
    • /
    • 2022
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Mutant DM225 with increased protein content was selected by EMS treatment on the weed rice Dharial. QTL analysis of Protein content was carried out using BC2F2 populations derived from a cross between "Hanareum2" as a recurrent parent and "DM225" as a donor parent. The protein content of populations was between 5~11%, with an average of 7.7%. To identify QTLs related to Protein content, 117 KASP markers(polymorphic ratio: 15%) showing polymorphisms between the parents were genotyped for the BC2F2 population. One QTL was detected between markers SK07 06 and SK07_10 on chromosome 7(LOD: 28.1). This QTL explained 71.4% of the phenotypic variance for Protein content. This QTL will be useful for protein-related rice breeding program.

  • PDF

Effect of Grazing Stage and Intensity on the Forage Production and Nutritive Value in Orchargrass Dominant Pasture (Orchargrass 위주 혼파초지에서 방목시기와 강도가 초지생산성 및 사료가치에 미치는 영향)

  • Seo, Sung;Shin, Jae-Soon;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 1996
  • A field experiment was carried out to determine the effects of grazing stage and intensity on the forage production and nutritive value in orchardgrass dominant pasture, 1989 and 1990. The grazing stages were 20- 25m, 30-35cm and 40-45cm of plant height, and high and medium grazing intensity were set by the number of growing cows (initial body weight: 230-250kg), which was adJusted according to the pasture production. The high level of grazing intensity was 150% of medium intensity. Annual grazing frequency was 10 times in 20-25cm. 8 times in 30-35cm. and 6 times in 40-45cm of plant height. Dry matter(DM) yield was increased with increasing of plant height at grazing : 7,090kg in 20-25cm 7,882kg in 30-35n and 8,260 kgha in 40-45cm of height. Higher DM was observed at medium grazing intensity. In spring, daily DM production was more vigorous than those in summer and autumn season. Cmde protein (CP), digestible DM, and DM intake were decreased with increasing of plant height at grazing. CP content was 25.8% in 20-25cm 22.4% in 30-35m and 19.2% in 40-45cm, while the contents of neutral detergent fiber and acid detergent fiber were increased with higher plant height. Relative feed value was 11 1.2 in 20-25cm, 104.4 in 30-35n and 99.6 in 40-45cm. Also nutritive value of pre-grazing pasture plants was remarkably higher than that of post-grazing, and not significant differences of nutritive value were found between grazing intensity. From the above mults, it may be concluded that optimum plant height for grazing was 20-25cm and 30- 35cm in pasture mixtures dominated by orchardgms, and medium grazing intensity was very desirable for pasture productivity.

  • PDF

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun;Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Lee, Jaewoo;Kwon, Hyeokpil;Choo, Kwang-Ho;Lee, Jung-Kee;Jang, Jae Young;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.573-583
    • /
    • 2017
  • Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

The Intake and Palatability of Four Different Types of Napier Grass (Pennisetum purpureum) Silage Fed to Sheep

  • Manyawu, G.J.;Sibanda, S.;Chakoma, I.C.;Mutisi, C.;Ndiweni, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.823-829
    • /
    • 2003
  • Four different types of silage from new cultivars of Napier grass (Pennisetum purpureum), cv. NG 1 and NG 2, were fed to eight wethers in order to evaluate their preference and intake by sheep. The silages were prepared from direct-cut NG 1 herbage; pre-wilted NG 1 herbage; NG 1 herbage with maize meal (5% inclusion) and NG 2 herbage with maize meal (5% inclusion). All silages were palatable to sheep. Maize-treated silage had high quality fermentation, characterized by high Fleig scores and low pH, volatile fatty acids (VFA) and ammoniacal nitrogen contents. The pH, Fleig score, in vitro digestible organic matter (IVDOMD) and ammoniacal-N contents for maize-treated cv. NG 1 silage were 3.7, 78, $540g\;kg^{-1}$ dry matter (DM ) and $0.18g\;kg^{-1}$ DM whereas, in maize-treated cv. NG 2 they were 3.6, 59, $^458g\;kg{-1}$ DM and $0.18g\;kg^-1$ DM, respectively. The superior quality of maize-treated silages made them more preferable to sheep. Among the maize-fortified silages, palatability and intake were significantly (p<0.001) greater with cv. NG 1. Although direct-cut silage had better fermentation quality compared to wilted silage, wilted silage was significantly (p<0.001) more preferable to sheep. However, there were no significant differences (p<0.05) in the levels of preference and intake of wilted silage compared to maize-treated cv. NG 2 silage, even though the latter tended to be more palatable. There were indications that high pH (4.6 vs 3.5) and IVDOMD content (476 vs $457g\;kg^{-1}%$ DM) of wilted silage contributed to higher intake, compared to direct-cut silage. It was generally concluded that pre-wilting and treatment of Napier grass with maize meal at ensiling enhances intake and palatability.

Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products (목질계 농부산물을 이용한 고체발효에서 발효조건 최적화를 통한 구연산 생산 증대)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.402-406
    • /
    • 2014
  • The present study was carried out to evaluate the potential of lignocellulosic byproducts for the production of citric acid through solid-state fermentation by Aspergillus niger NRRL 567. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation conditions and media constituents. The results obtained from the optimization indicated that $30^{\circ}C$, 70% moisture content, 0.5~1.0 mm particle size, pH 5.5 and 4% methanol were found to be the optimum condition at 72 hr fermentation. The application the optimization resulted in an improvement of maximum citric acid production from 74.5 to 206.0 g/kg dry material (DM) from wheat straw. The optimal condition was used to produce citric acid from A. niger grown on different lignocellulosic byproducts, including wheat straw, corn stover and peat moss. A. niger produced the highest citric acid levels of 231.8, 213.8 and 240.2 g/kg DM at 120 hr fermentation, respectively.

Net energy and its establishment of prediction equations for wheat bran in growing pigs

  • Zhiqian, Lyu;Yifan, Chen;Fenglai, Wang;Ling, Liu;Shuai, Zhang;Changhua, Lai
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.108-118
    • /
    • 2023
  • Objective: The objective of this experiment was to determine the net energy (NE) value of 6 wheat bran and 1 wheat shorts by indirect calorimetry and establish the NE prediction equations of wheat bran fed to growing barrows. Methods: Forty-eight growing barrows (28.5±2.4 kg body weight) were allotted in a completely randomized design to 8 dietary treatments that included a corn-soybean meal basal diet, 6 wheat bran diets and 1 wheat shorts diet. The inclusion level of wheat bran or wheat shorts in diets is 30%. Results: The addition of wheat bran reduced the apparent total tract digestibility (ATTD) of nutrients (p<0.05). The ATTD of gross energy, crude protein (CP) and dry matter (DM) in the wheat shorts were greater than that in the wheat bran. Addition of wheat bran or wheat shorts had no effect on total heat production and fasting heat production. The NE of wheat bran was negatively correlated with neutral detergent fiber (r = -0.84; p<0.05) and acid detergent fiber (r = -0.83; p<0.05), while it was positively correlated with CP (r = 0.92; p<0.01). The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The ratio of NE to metabolizable energy for wheat bran fed to growing pigs was from 66.0% to 71.7%, whereas the value for wheat shorts was 83.7%. Conclusion: The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The NE value of wheat bran can be well predicted based on energy content and proximate analysis.

Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth I. Effects of temperature on growth, total content of nitrogen and non-structureal carbohydrate in forage rape(Brassica napus L.) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 I. 저온처리가 유채 ( Brassica napus L. ) 의 생육 , 질소 및 비구조성 탄수화물의 총 함량에 미치는 영향)

  • 김병호;김태환;김기원;정우진;전해열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Dry matter, nitrogen and non-structural carbohydrate content of plants grown under $5^{\circ}C$ or $20^{\circ}C$ of culture temperature during 25 days were investigated. The dry matter content of leaves and roots were significantly reduced under $5^{\circ}C$ compared with $20^{\circ}C$culture condition. Comparing with the dry matter per plant under $20^{\circ}C$, those in leaves and roots under $5^{\circ}C$ decreased to 25% and 10%, respectively, after 25 days of temperature treatment. Total nitrogen content in leaves under $20^{\circ}C$ and $5^{\circ}C$ increased to 68% and 39% compared to the initial lenel(day O), respectively, during 25 days after temperature treatment, Nitrogen content in roots highly increased under 5 C while there was a little change under $20^{\circ}C$ condition. The nitrogen contents in roots under $5^{\circ}C$ and $20^{\circ}C$ were 39.0 and 30.8mgJg DM, respectively, after 25 days of temperature treatment. Total contents of soluble carbohydrate in both leaves and roots under $5^{\circ}C$ were higher than those under $20^{\circ}C$ condition. After 25 days of temperature treatment under$5^{\circ}C$ , their contents in leaves and roots were 1.4 and 2.0 times higher than those of under $20^{\circ}C$ condition. Stach atent in roots under $20^{\circ}C$ was less changed, while thatof under $5^{\circ}C$ greatly increased from 64.8 to 178.7mglg DM duling 25 days. 'Ihese results clearly showed that an accumulation of both nitrogen and non-structural carbohydrate in the plants occured under low temperature condition.e condition.

  • PDF

Comparison of Agronomic Characteristics, Productivity and Feed Values of Summer Sowing Sorghum Hybrids in Gyeongbuk (경북지역에서 여름 파종 수수류 교잡종의 생육특성, 수량성 및 사료가치 비교)

  • Shin, Chung Nam;Ko, Ki Hwan;Kim, Jong Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • This study was conducted to evaluate on agronomic characteristics, dry matter (DM) and digestible dry matter (DDM) yields of summer sowing sorghum hybrids (Sorghum bicolor (L) Moench) at Seongju in Gyeongbuk from 2013 to 2014. The experiment was arranged in randomized complete block design with three replications. Sorghum hybrids were seeded $31^{st}$ of July, 2013 and 2014. Sorghum hybrids were harvested on $3^{rd}$ November, 2013 and $5^{th}$ November, 2014. The observed average heading date was October 5, 8 and 9 for Sordan79, Sprint and SX17 respectively. The DM yield of 'SX17', 'Sordan79', and 'Sprint' was 24.2, 23,9 and 23.4 ton/ha, respectively and DM yield of those were significantly higher (p<0.05) than other three cultivars in 2013. DM yield of 'SX17', 'Sprint' and 'Sordan79' was 20.8, 20.0 and 19.3 ton/ha, respectively and DM yield of those was significantly higher (p<0.05) than other three cultivars in 2014. The DDM yield of 'SX17', 'Sordan79', and 'Sprint' was also higher (p<0.05) than other three cultivars in 2013 and 2014. ADF content of sorghum hybrids was low, whereas DDM was high. The results of this study indicated that traditional sorghum-sudangrass hybrids ('SX17', 'Sordan79') and sudan grass-sudangrass hybrid ('Sprint') than late flowering sorghum-sudangrass hybrid ('PACF8350') and sorghum-sorghum hybrids ('SS405', 'Sugar grazer') would be recommended for DM and DDM yields in the southern Korea.

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.