• Title/Summary/Keyword: DLC-1

Search Result 190, Processing Time 0.027 seconds

Extended Direct Learning Control for Single-input Single-output Nonlinear Systems (단일 입출력 비선형 시스템에 대한 확장된 직접학습제어)

  • Park, Joong-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, an extended type of a direct learning control(DLC) method is proposed for the effective control of systems which perform a given task repetitively. DLC methods have been suggested to overcome the defects of iterative learning control, the learning process should be resumed from the beginning even if a slight change occurs in the desired output pattern. If a given desired output trajectory is "proportional" to the output trajectories which are learned previously, we can obtain the desired control input directly without the iterative learning process by using the DLC. First, most existing DLC methods are shown to be applicable only to single-input single-output systems with the relative degree one and then, an extended type of DLC is proposed for a class of nonlinear systems having the relative degree more than or equal to one by using the known relative degree of a nonlinear system. By the simulation results for the arbitrary nonlinear system with the relative degree more than one, the validity and the performance of the proposed DLC method are examined.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

Influence of Treatment Temperature on Surface Characteristics during Low Temperature Plasma Carburizing and DLC duplex treatment of AISI316L Stainless Steel (AISI316L 강에 저온 플라즈마침탄 및 DLC 복합 코팅처리 시 처리온도에 따른 표면특성평가)

  • Lee, In-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.60-65
    • /
    • 2011
  • A low temperature plasma carburizing process was performed on AISI 316L austenitic stainless steel to achieve an enhancement of the surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface hardened layer during low temperature plasma carburizing in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}_c$) phase, which contains a high saturation of carbon (S phase), was formed on all of the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $550^{\circ}C$. The hardened layer thickness of ${\gamma}_c$ increased up to about $65{\mu}m$ with increasing treatment temperature. The surface hardness reached about 900 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). A minor loss in corrosion resistance was observed for the specimens treated at temperatures of $300^{\circ}C{\sim}450^{\circ}C$ compared with untreated austenitic stainless steel. In particular, the precipitation of chromium carbides at $550^{\circ}C$ led to a significant decrease in the corrosion resistance. A diamond-like carbon (DLC) film coating was applied to improve the wear and friction properties of the S phase layer. The DLC film showed a low and stable friction coefficient value of about 0.1 compared with that of the carburized surface (about 0.45). The hardness and corrosion resistance of the S phase layer were further improved by the application of such a DLC film.

Mechanical Stability of TiN and DLC Coated Instrument of Pedicle Screw System (TiN 및 DLC 코팅된 척추경나사못시스템 수술기구의 기계적 안정성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • Durability of instrument is one of the most important factor to ensure accurate treatment and decrease failure for the orthopedic surgical operation. Normally, a set-screw driver tip has been processed with hard coating for their higher durability and wear resistance. And several surface modification methods were obtained such as titanium nitride (TiN) coating, diamond like carbon coating, other nitriding, and etc. In this study, we have surface modified on set-screw driver tip with TiN and DLC, investigated whether the TiN and DLC coatings affect the mechanical properties and durability of the set-screw driver tip in the pedicle screw system. The surface morphologies were observed with scanning-electron microscopy (SEM), and the static/dynamic torsional properties were investigated with universal testing machine based on ASTM F543. Coating thickness of each coatings were commonly around $1^{\circ}C$. Static torsional stiffness, and ultimate torque values for DLC and TiN coated samples were significantly higher than those of non-coated sample by the pared T-test. Surface morphology of after the dynamic torsional test was more clean with less scratch or friction traces from DLC coating than that of TiN coating and non-coated sample.

Friction Mechanisms of Silicon Wafer and Silicon Wafer Coated with Diamond-like Carbon Film and Two Monolayers

  • Singh R. Arvind;Yoon Eui-Sung;Han Hung-Gu;Kong Ho-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.738-747
    • /
    • 2006
  • The friction behaviour of Si-wafer, diamond-like carbon (DLC) and two self-assembled monolayers (SAMs) namely dimethyldichlorosilane (DMDC) and diphenyl-dichlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer In-terestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly Influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains.

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Present status of Standardization of Diamond-like Carbon Coating in Japan

  • Hiratsuka, Masanori;Ohtake, Naoto;Saitoh, Hidetoshi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.12.2-12.2
    • /
    • 2011
  • Diamond-like carbon (DLC) coatings are used nowadays in various applications such as a protective coating against wear or corrosion in automotive parts, and recently its use is more and more apparent in particular biomedical applications [1]. The Japanese Ministry of Economy, Trade and Industry has started a program of collaborative study for industrial standardization of DLC films and their evaluation techniques. Japan New Diamond Forum (JNDF), Nanotec Corporation and the Nagaoka University of Technology are conducting this program. This project includes national organizations (businesses, universities, and research facilities), encompassing a wide range of requirements. JNDF organize Japanese project committee and working group. The purpose of this report is to discuss standardization and classification of DLC coatings.

  • PDF

EO Performances for Ion-beam Aligned TN-LCD on a DLC Thin Film Layer

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Lee, Sang-Keuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.118-120
    • /
    • 2002
  • Electro-optical (EO) characteristics of the ion beam (IB) aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the diamond-like carbon (DLC) thin film surface were studied. An excellent voltage-transmittance (V-T) curve of the ion beam aligned IN-LCD was observed with oblique ion beam exposure on the DLC thin film surface for I min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved.

  • PDF

물리기상증착법으로 형성된 다이아몬드상 탄소 박막의 마찰 특성에 관한 연구

  • 박관우;문일도;나종주;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.141-141
    • /
    • 2004
  • 다이아몬드상 탄소(diamond-like carbon, DLC) 박막은 명칭에 함축된 의미로 알 수 있듯이 다이아몬드와 유사한 특징을 지니고 있다. DLC 박막은 비정질(amorphous) 고상 탄소 박막으로 구조적으로 Sp$^1$, Sp$^2$, Sp$^3$의 결합들로 구성되어 있다. DLC 박막의 물성으로는 우수한 경도, 내마모성, 낮은 마찰계수, 화학적 안정성 그리고 적외선(IR) 영역에서의 높은 투과율 등이 있다. 현재 DLC 박막은 앞서 열거된 물성들의 장점을 활용하여 다양한 산업분야에서 활발히 응용되고 있다.(중략)

  • PDF

Synthesis Method for the Adaptive SLB Channel Based on the Spatial DLC (Spatial DLC를 기반으로 한 적응적 SLB 채널 합성에 대한 연구)

  • Jang, Youn Hui;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.608-614
    • /
    • 2018
  • This paper describes the synthesis method for an adaptive SLB channel, which is robust to interference in the ULA radar system. The SLB channel based on the spatial DLC can be synthesized simply and is effective in blanking the signal coming from the sidelobe. We combined it with adaptive beamforming, which removes the strong interference using its correlation matrix. The adaptive SLB channel would suppress the interference below the noise, so it has good performance in an interference environment. This research will be applicable to planar array systems.