• Title/Summary/Keyword: DIN:DIP ratio

Search Result 47, Processing Time 0.019 seconds

Assessment of the Marine Environment in Masan-Jinhae Bay of Korea in Relation to Algal Blooms

  • Lee, Moon-Ock;Kim, Pyeong-Joo;Moon, Jin-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.7-24
    • /
    • 2008
  • Masan-Jinhae Bay, in Korea, is known for its frequent algal bloom outbreaks. This study was conducted in order to examine the environmental characteristics of the area, with the aim of identifying indicators that could be used to speculate about future algal blooms. The water temperatures and salinities in Haengam Bay, one of the small inner bays within Jinhae, appeared to re relatively higher than those in Masan and Jinhae bays, across most seasons. Furthermore, stratification begins to develop in all three regions from spring to summer as a result of the local heating effects and an increase in the efficient from the surrounding land. As a result, anoxic conditions appear near the bottom layer of the bay, leading to the deterioration of water quality, which has been identified as one of the causes of bloom outbreaks. Compared to Haengam and Jinhae bays, concentrations of DIN and DIP were remarkably higher in Masan Bay. However, the mean ratio of DIN to DIP was 3.3$\sim$13.6 in all three regions throughout the year, suggesting that nitrogen can function as a growth-limiting factor for phytoplankton. The results of mathematical models showed that cumulative organic pollutants may be a trigger for direct algal bloom occurrences, since residual tidal currents appeared to be less than $3\;cm\;\cdot\;s^{-1}$. Furthermore, computed DO concentrations in the four small inner bays of Jinhae during the summer appeared to be $3\;cm\;\cdot\;l^{-1}$ indicating a hypoxic state. Likewise, computed Chl-a concentrations turned out to be more than $0.01\;mg\;\cdot\;l^{-1}$, indicating eutrophication across most seasons. Based on the overall results, Masan-Jinhae Bay appeared to possess a very high potential for algal bloom outbreaks at anytime during the year.

Seasonal Changes in Phytoplankton Composition in Jinhae Bay, 2011 (2011년 진해만 식물플랑크톤 군집의 계절적 변화)

  • Park, Kyung-Woo;Suh, Young-Sang;Lim, Weol-Ae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.520-529
    • /
    • 2012
  • Geographic distribution and species composition of phytoplankton were investigated in Jinhae Bay for 12 months. Total 158 species were found including 95 bacillariophyceae, 58 dinophyceae, 1 euglenoids, and 4 dictyochaceae. The total cell numbers of phytoplakton ranged from $4.0{\times}10^3{\sim}9.0{\times}10^7\;cells{\cdot}L^{-1}$. Highest and lowest amounts of cells were found in July (Chl.a 13.19 $mg{\cdot}m^{-3}$) and March(Chl.a 3.44 $mg{\cdot}m^{-3}$), respectively. Leptocylindrus danicus and Pseudo-nitzschia spp. were dominant in spring, and Dactliosolen fragilissimus and Pseudo-nitzschia spp. were dominant in summer. Chaetoceros spp. and Skeletonema spp. were domonant in autumn and winter. The amounts of nitrogen and phosphorus were also measured during the survey. Higher ratio of nitrogen (DIN : DIP = 28 : 1) was found in the east Jinhae Bay compared to the ratio of the west Jnhae Bay that showed 14 : 1 of N : P ratio. The total amounts of nitrogen, phosphorus and Chl.a were also higher in the east Jinhae Bay compared to the west area. The geographic differences between the east and west of Jinhae Bay were also discussed along with phytoplankton compostion.

Relationship between Physico-Chemical Factors and Chlorophyll-$a$ Concentration in Surface Water of Masan Bay: Bi-Daily Monitoring Data (마산만 표층수에서 물리-화학적 수질요인과 엽록소-$a$ 농도 사이의 관계: 격일 관측 자료)

  • Jung, Seung-Won;Lim, Dhong-Il;Shin, Hyeon-Ho;Jeong, Do-Hyun;Roh, Youn-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • In order to investigate water quality factors controlling chlorophyll-$a$ concentrations, the by-daily monitoring was conducted from February to November 2010 in 4 stations of Masan Bay. Seasonal variability in physico-chemical factors was mainly controlled by freshwater loading as a result of precipitation: chemical oxygen demand, suspended solids and nutrient concentrations rapidly increase during the heavy rainy season, whereas they decrease in the dry season. From late winter to mid spring, phosphorus and silica sources relative to Redfield ratio were probably functioned as limiting factor for phytoplankton flourishing in surface waters, but nitrogen concentration during mid-spring to autumn might be responsible for the increase of phytoplankton biomass. The multiple regression analysis revealed that variations in chlorophyll-$a$ concentration may be strongly correlated with changes of water temperature, chemical oxygen demand, dissolved inorganic phosphorus in spring, and salinity, chemical oxygen demand and precipitation in summer. Consequently, in the Masan Bay, a heavy rainfall event is an important factor to determine changes of biotic and abiotic factors, and in addition the dynamics of chlorophyll-$a$ concentration are strongly affected by changes of hydrological factors, especially water temperature, precipitation and nutrients.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Seasonal Characteristics of Phytoplankton Distribution in Asan Bay (아산만 식물플랑크톤의 계절별 군집 분포 특성)

  • Yi, Sang-Hyon;Sin, Yong-Sik;Yang, Sung-Ryull;Park, Chul
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • Samples were collected from five stations in February, May, July, and September 2004 to investigate seasonal variations in the phytoplankton community and the relationship between dominant genera and environmental factors in Asan Bay. In February, microphytoplankton contributed 80% to the total chlorophyll a. Diatom dominated the phytoplankton community, accounting for 85.9% of the total cell number, followed by dinoflagellates (6%). Dominant species were Skeletonema costatum and Thalassiosira spp. Abundant diatom, including S. costatum and Thalassiosira spp., may be affected by water temperature and silicate at Station 1 and 2 in February 2004. In May, the nanophytoplankton contribution to total phytoplankton was higher than in other seasons. However, abundance of S. costatum and Thalassiosira spp. decreased, since the growth of S. costatum and Thalassiosira spp. might be limited by phosphates (P) resulting from low P concentration and a high DIN:DIP ratio in the outer region. In July, dominant phytoplankton groups were diatom (39%), cryptophyceae (28%), and cyanophyceae (20%). Dominant genera were Oscillatoria spp. and phytoflagellate of a monad type in the inner region (Station 1 and 2), whereas S. costatum was dominant in the outer region (Station 4 and 5). In September, dominant phytoplankton were diatom (69%) and cryptophyceae (28%). Dominant genera were phytoflagellate of the monad type, S. costatum in the inner region, while Chaetoceros spp. was dominant in the outer region.

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Application of Ecosystem Model for Eutrophication Control in Coastal Sea of Saemankeum Area -1. Characteristics of Water Quality and Nutrients Released from Sediments- (새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용 -1. 해역의 수질 특성 및 저질의 용출 부하량 산정-)

  • Kim Jong Gu;Kim Yang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.348-355
    • /
    • 2002
  • To know characteristics of water quality in Saemankeum area, we were investigated the water quality of surface layer from July of 1999 to June of 2000. The concentrations of COD and chlorophyll a were in the range of $0.64\~6.40$ (mean 1.96)mg/L, $1.95\~51.55$ (mean 11,07)$mg/m^3$, respectively. The annual mean concentrations of DIN, DIP were found to be 21.182 $\mu$g-at/L and 0,655 $\mu$g-at/L respectively, which were exceeding second grade of seawater quality standard. The nitrogen ratio to the phosphorus was lower than 1. Therefore, nitrogen was playing an important role in phytoplankton growth as limiting factor in study area. Mean values of eutrophication index were exceeding 1, which was the eutrophication criteria. Especially Mankyung and Dongjin estuary were shown over 10 as eutrophication index. Therefore, Saemankeum area could be evaluated to possibility area for eutrophication. Released rate for ammonia nitrogen and phosphate phosphorus from sediments were 62.92 ${\mu}g-at/m^3/hr$ and 6.71 ${\mu}g-at/m^3/hr$, respectively.

Distribution Characteristics of Organic Carbon and Nutrient in Effluent of Land-based Aquaculture Farms around Wando in Korea (하계 완도 주변 육상 양식장 배출수 중 유기탄소 및 영양염의 분포 특성)

  • GyuRi Kim;Yujeong Choi;Tae–Hoon Kim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • To evaluate the impact of effluents from land-based fish farms on the coastal ocean of Wando, Korea, we analyzed inorganic nutrients, particulate organic carbon (POC), dissolved organic carbon (DOC), and colored dissolved organic matter (CDOM) in the effluent and influent of land-based fish farms during the summer (July) of 2021. The average concentrations of nutrients (Dissolved inorganic nitrogen, phosphorus, and silicate; DIN, DIP, and DSi, respectively) in the effluents of this study area were 17±3.7 μM, 1.4±0.7 μM, and 14±1.6 μM, respectively. The average concentrations of POC and DOC were 37±22 μM and 81±13 μM, respectively, with POC accounting for about 30% for total organic carbon in effluents. The Reduced Dissolved Inorganic Nitrogen/Total Dissolved Inorganic Nitrogen ratio (0.7), potential short-period index, indicates that the discharge of nutrients excreted by the fish and unconsumed feed into coastal water results in such nutrients being deposited and accumulated in the sediment. Subsequently, this continuous accumulation triggers the release of ammonium ions during organic matter decomposition, and the ammonium-enriched waters that encroach on fish farms as influent seem to be due to the diffusion of high concentrations of ammonium from bottom sediment. Furthermore, we used fluorescence indices to examine the characteristics of organic matter sources, obtaining mean values of 1.54±0.19, 1.06±0.06, and 1.56±0.06 for the humification index, biological index, and fluorescence index, respectively, in the effluent. These results indicate that the organic matters had an autochthonous origin that resulted from microbial decomposition, and such organic matters were rapidly generated and removed by biological activity, likely supplied from the sediment. Our results suggest that the effluent from land-based fish farms could be a potential source of deoxygenation occurrence in coastal areas.

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea (자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성)

  • Lee, Dae In;Choi, Yong-Hyeon;Hong, SokJin;Kim, Hyung Chul;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.721-734
    • /
    • 2022
  • This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea (옹진군 어장관리해역의 수질 및 퇴적물 환경 특성)

  • Kim, Sun-Young;Kim, Hyung-Chul;Lee, Won-Chan;Hwang, Dong-Woon;Hong, Sok-Jin;Kim, Jeong-Bae;Cho, Yoon-Sik;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.570-581
    • /
    • 2013
  • To improve productivity of aquaculture animals with management of culturing grounds, survey of mariculture management area in Ongjin-gun about water quality and sedimentary environment had been conducted on June, August and November in 2011. Water temperature in surface and bottom waters ranged from 9.49 to $24.14^{\circ}C$. Salinity and dissolved oxygen concentrations were in the range of 23.19~31.49 and 5.48~9.36 mg/L, respectively, depending on the variation of water temperature. The average concentration of COD was 1.57 mg/L and the concentrations of DIN and DIP showed entirely low level. As the result of grain size analysis, sand(56.66 %) and silt(34.60 %) were predominated. The Mz of sediment showed a variation of 2.59 to $6.62{\O}$ and sorting appeared to be poorly sorted. The concentrations of COD and IL in surface sediment ranged from 1.00 to $11.03mg/g{\cdot}dry$ and 0.72 to 5.29 %, respectively, which showed relatively good positive correlations. On the environmental assessment of trace metals in surface sediment, geoaccumulation index ($I_{geo}$) class indicated that sediments were not contaminated by most of metallic elements except Cr and As. Our result implies that this study area showed good water quality and sediments were not polluted by organic matters and metallic elements.