• Title/Summary/Keyword: DID (Decentralized Identity)

Search Result 26, Processing Time 0.035 seconds

FinDID : A DID service supporting the standard service scheme for the financial sector

  • Lee, Young-Eun;Kim, Hye-Won;Lee, Myung-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.127-138
    • /
    • 2022
  • In this paper, we present FinDID (Financial Decentralized IDentity), a blockchain-based DID(Decentralized IDentity) service that can flexibly control personal information or credentials through a systematic verification method while complying with the standard service scheme of decentralized identity for the financial sector. DID is an identity management system used in a decentralized environment without a specific certification authority, and as a technology that allows users to control their own information, it can realize self-sovereignty over users' own personal information. Through FinDID, users receive credentials that authenticate their various personal information from the issuer, select only the claims required by the target financial service using their personal electronic wallet, create presentations from credentials. Then they submit it to the financial service, leading to their qualification from the service. FinDID consists of electronic wallet, credential issuer, credential storage, DID service including DID management contract and credential management contract, and financial services using this service scheme. The DID service manages each user's DID and supports all verification processes of the associated identity management scheme.

Construction of Hyperledger Fabric based Decentralized ID System (하이퍼레저 패브릭 기반 탈중앙화 신원 인증 시스템 구축)

  • Kwang-Man Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • Through the coronavirus pandemic, research on the use and advancement of blockchain-based decentralized identity authentication (Decentralized ID) technology is being actively conducted in various fields, centered on the central government, local governments, and private businesses. In this paper, we introduce the results of development based on Hyperledger Fabric to change the existing central server-based identity authentication to a decentralized one. These development results can strengthen the security and transparency of identity authentication systems for commercial purposes and provide stable services for user ID issuance, inquiry, and disposal. In addition, the decentralized identity authentication system verified performance results of DID creation of 262,000 rps and DID inquiry of 1,850 rps, DID VP creation of 200 rps, and DID VP inquiry of 220 rps or less through public authentication.

Blockchain-based DID Problem Analysis Research (블록체인 기반의 DID 문제점 분석 연구)

  • Lee, Kwangkyu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • DID(Decentralized Identity Identification) is a system in which users voluntarily manage their identity, etc., and control the scope and subject of submission of identity information based on a block chain. In the era of the 4th industrial revolution, where the importance of protecting personal information is increasing day by day, DID will surely be positioned as the industrial center of the Internet and e-business. However, when managing personal information, DID is highly likely to cause a large amount of personal information leakage due to electronic infringement, such as hacking and invasion of privacy caused by the concentration of user's identity information on global service users. Therefore, there are a number of challenges to be solved before DID settles into a stable standardization. Therefore, in this paper, we try to examine what problems exist in order to positively apply the development of DID technology, and analyze the improvement plan to become a stable service in the future.

Distributed Identity Authentication System based on DID Technology (DID 기술에 기반 한 분산 신원 인증 시스템)

  • Chai Ting;Seung-Soon Shin;Sung-Hwa Han
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.17-22
    • /
    • 2023
  • Traditional authentication systems typically involve users entering their username and password into a centralized identity management system. To address the inconvenience of such authentication methods, a decentralized identity authentication system based on Distributed Identifiers(DID) is proposed, utilizing decentralized identity technology. The proposed system employs QR code scanning for login, enhancing security through the use of blockchain technology to ensure the uniqueness and safety of user identities during the login process. This system utilizes DIDs and integrates the InterPlanetary File System(IPFS) to securely manage organizational members' identity information while keeping it private. Using the distributed identity authentication system proposed in this study, it is possible to effectively manage the security and personal identity of organization members. To improve the usability of the system proposed in this study, research is needed to expand it into a solution.

Design and implementation of access control systems using decentralized identifier technology (탈중앙화 신원증명을 이용한 출입통제 시스템의 설계 및 구현)

  • Lee, Sang-Geun;Kim, Do-Hyeong;Jung, Soon-Ki
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2021
  • Decentralized Identifier (DID) technology is a technology that uses blockchain technology to prove an individual's identity through information owned by the individual rather than through a central system. In this paper, we would like to present an access control system using decentralized identifier technology. The access control system using decentralized identifier technology (DID access control system) is a system that allows users to verify their identity from the DID blockchain server through their smartphone (mobile employee ID) and access when they are confirmed to be registered in the access control system. Through this, access control can be managed only by verifying identification with smartphones (mobile employee ID) and DID blockchain servers without having to store information to prove an individual's identity in the access control system.

A Decentralized Face Mask Distribution System Based on the Decentralized Identity Management (블록체인 분산신원증명에 기반한 탈중앙화된 마스크 중복구매 확인 시스템)

  • Noh, Siwan;Jang, Seolah;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.315-320
    • /
    • 2020
  • Identity authentication is an important technology that has long been used in society to identify individuals and provide appropriate services. With the development of the Internet infrastructure, many areas have expanded into online areas, and identity authentication technologies have also expanded online. However, there is still a limit to identity authentication technology that relies entirely on trusted third parties like the government. A centralized identity management system makes the identification process between agencies with different identity management systems very complex, resulting in a waste of money and time for users. In particular, the limits of the centralized identity management system were clearly revealed in the face mask shortage in the 2020 COVID-19 crisis. A Decentralized Identity (DID) is a way for users to manage their identity on their own, and recently, a number of DID platform based on blockchain technology have been proposed. In this paper, we analyze the limitations of the existing centralized identity management system and propose a DID system that can be utilized in future national emergency situations such as COVID-19.

Proposal for a Peer Decentralized Identity System Using Short-Range Wireless Communications (단거리 무선 통신을 이용한 개인 간 분산 신원증명 시스템 제안)

  • Yeo, Kiho;Park, Keundug;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.959-972
    • /
    • 2021
  • Decentralized Identity is based on the concept of self-sovereign identity, in which holders manage and provide their own credentials. However, a procedure is required to obtain credentials from issuers, and there is a risk of mess personal information leaking due to negligence of the issuers. In this paper, we propose a peer decentralized identity system based on Peer DID technology that allows only participants to verify their identity in 1:1 or 1:N small groups by matching the holder with the issuer. It is directly connected to a mobile device using short-range wireless communications such as bluetooth, and the holders create and provide their own credentials in person to the other party, thus fully realizing the self-sovereignty identity. The proposed system can simplify the identification process, improve security and privacy, and reduce costs. Furthermore, an extended architecture is possible to connect the proposed system and the distributed ledger to identify users in other domains. In the future, based on various technologies, it is also necessary to expand research on identity systems that can be utilized for human-to-thing and things-to-things authentication.

A study on DID self-sovereign identity for digital content management (디지털 콘텐츠 자기주권 신원 관리를 위한 DID 연구)

  • Baek, YeongTae;Min Youn, A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.395-396
    • /
    • 2020
  • 본 논문에서는 디지털 콘텐츠의 유통과정의 복잡함과 창작자에 대한 권리를 보장하기 위하여 블록체인 기반 플랫폼을 통하여 투명하고 무결성이 보장된 자기권한 관리가 가능하도록 DID(Decentralized Identity)의 적용을 연구하였다. DID의 효율적 적용을 위하여 DID문서와 Verifiable Credential과 presentation의 관리상 특징을 고려하고 DID를 통한 인증과정에서 발생하는 다양한 메타데이터에 대하여 차별화된 암호화 기법적용이 가능하도록 하였다. 본 논문의 연구를 통하여 디지털 콘텐츠에 대한 자기권한 관리가 보다 간단해지고 권리인증 과정 시 안정된 성능 제공이 가능할 것으로 사료된다.

  • PDF

Implementation and Utilization of Decentralized Identity-Based Mobile Student ID (분산 ID 기반 모바일 학생증 구현과 활용)

  • Cho, Seung-Hyun;Kang, Min-Jeong;Kang, Ji-Yun;Lee, Ji-Eun;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1115-1126
    • /
    • 2021
  • In this paper, we developed a mobile student ID providing a self sovereignty identity (SSI) which replaces the conventional plastic-type student ID that includes private information of a student such as a name, a student number, a facial photo, etc. The implemented mobile student ID solves the problem of exposing student's identity due to a loss or a theft of a plastic-type student ID, and it has a structure and process of FRANCHISE model which is developed by a concept of a decentralized Identity(DID) of a Blockchain, in which specialized for convenience as an electronic student ID through an application on a smart phone device. In addition, it protects student's privacy by controlling personal information on oneself. By using a smartphone, not only it easily identifies the student but also it expands to several services such as participation in school events, online authentication, and a student's exchange program among colleges.

A Study on Efficient Data De-Identification Method for Blockchain DID

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2021
  • Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.