• Title/Summary/Keyword: DGGE fingerprinting

Search Result 18, Processing Time 0.019 seconds

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung;Kim, Min-Cheol;Shin, Hye-Chul;Choi, Min-Kyeong;Yoon, Sang-Seek;Kim, Tae-Sung;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1561-1569
    • /
    • 2006
  • Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Molecular Systematic Study of Bacterial Community Associated with Sand Dune Plants (사구식물 연관 세균 군집의 분자계통학적 연구)

  • Do, Jin-Ok;Park, Seong-Joo;Kim, Seung-Bum
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.356-362
    • /
    • 2007
  • The rhizobacterial diversity associated with 9 native plant species inhabiting coastal sand dunes in Tae-an area, Chungnam Province, was studied using the denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis over three times from October 2003 to March 2004. One dominant band commonly occurred in all of the rhizosphere samples, which was identified as that of Lysobacter enzymogenes. The other common bands included those derived from species of Pseudomonas and Bacillus. It was notable that L. enzymogenes was dominant in all of the 9 plant species and such dominance was consistent throughout the whole sampling period, which confirms the previous study by Lee et al. (2006a). The Bacillus bands were detected in all of the three samplings, and those of Pseudomonas were notable in the samples of December 2003. By the DGGE analysis alone, the significance of Lysobacter to the sand dune plants is not clear. However, considering their presence in healthy plants and the dominance in all plant species, Lysobacter may have positive roles in the survival or growth of the plants in sand dune area.

Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants (주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구)

  • Kim Jai-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.66-77
    • /
    • 2006
  • This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.

Thermophilic Biofiltration of Benzene and Toluene

  • Cho, Kyung-Suk;Yoo, Sun-Kyung;Ryu, Hee-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1976-1982
    • /
    • 2007
  • In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as a packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity ($1,650\;g{\cdot} m^{-3}{\cdot} h^{-1}$) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE ($470\;g{\cdot} m^{-3}{\cdot} h^{-1}$). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 168 rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

Bacterial Community of Natural Dye Wastewater Treatment Facility (천연염색 폐수처리시설의 세균 군집)

  • Hwang, Yeoung Min;Kim, Dae Kuk;Lee, Ji Hee;Baik, Keun Sik;Park, Chul;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.393-402
    • /
    • 2014
  • Culture-dependent and culture-independent denaturing gradient gel electrophoresis (DGGE) analyses were employed to investigate the bacterial community associated with a natural dye wastewater treatment facility. A total of 104 (influent water, 48 strains; aeration tank, 25; settling tank, 31) bacterial strains were isolated. Based on the 16S rRNA gene sequences comparison analysis, the isolates belonged to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes. Seventeen DGGE bands representing dominant taxa in each sample were cloned and partially sequenced. The same four phyla were detected by DGGE fingerprinting. The most dominant taxon retrieved by both methods was the member of the phylum Proteobacteria with Alphaproteobacteria as the predominant class. The bacterial community associated with the natural dye wastewater treatment facility is composed of parasites of animals and plants, decomposers of polysaccharides and dyes, and producers of extracellular polysaccharides.

Effect of Methyl tert-Butyl Ether and Its Metabolites on Microbial Activity and Diversity in Tidal Mud Flat (갯벌 미생물 활성 및 다양성에 미치는 Methyl tert-Butyl Ether(MTBE)와 MTBE 대사산물의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The effect of methyl tert-butyl ether (MTBE) and its metabolites like tert-butyl alcohol (TBA), and formaldehyde (FA) on microbial activity and diversity in tidal mud flat was studied. MTBE, TBA, and FA with different concentrations were added into microcosms containing tidal mud samples, and placed at room temperature for 30 days. Then the physico-chemical properties such as pH, moisture contents and organic matter contents in the microcosms were measured. In addition, the total viable cell number and dehydrogenase activity were measured. Bacterial communities in the microcosms were monitored using a 16S rRNA-PCR-DGGE (Denaturing gradient gel electrophoresis) fingerprinting method. As a result, the exposure concentrations of MTBE and its metabolites showed no correlation with the physico-chemical factors (P>0.05). Dehydrogenase activity and total viable cell number were decreased with increasing MTBE, TBA and FA concentrations (P<0.05). The toxic effect was higher the following order: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE and its metabolites were Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria. The diversity of bacterial community was not significantly influenced by MTBE and its metabolites.

Structure and Diversity of Arsenic-Resistant Bacteria in an Old Tin Mine Area of Thailand

  • Jareonmit, Pechrada;Sajjaphan, Kannika;Sadowsky, Michael J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2010
  • The microbial community structure in Thailand soils contaminated with low and high levels of arsenic was determined by denaturing gradient gel electrophoresis. Band pattern analysis indicated that the bacterial community was not significantly different in the two soils. Phylogenetic analysis obtained by excising and sequencing six bands indicated that the soils were dominated by Arthrobacter koreensis and $\beta$-Proteobacteria. Two hundred and sixty-two bacterial isolates were obtained from arsenic-contaminated soils. The majority of the As-resistant isolates were Gramnegative bacteria. MIC studies indicated that all of the tested bacteria had greater resistance to arsenate than arsenite. Some strains were capable of growing in medium containing up to 1,500 mg/l arsenite and arsenate. Correlations analysis of resistance patterns of arsenite resistance indicated that the isolated bacteria could be categorized into 13 groups, with a maximum similarity value of 100%. All strains were also evaluated for resistance to eight antibiotics. The antibiotic resistance patterns divided the strains into 100 unique groups, indicating that the strains were very diverse. Isolates from each antibiotic resistance group were characterized in more detail by using the repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique with ERIC primers. The PCR products were analyzed by agarose gel electrophoresis. The genetic relatedness of 100 bacterial fingerprints, determined by using the Pearson product-moment similarity coefficient, showed that the isolates could be divided into four clusters, with similarity values ranging from 5-99%. Although many isolates were genetically diverse, others were clonal in nature. Additionally, the arsenic-resistant isolates were examined for the presence of arsenic resistance (ars) genes by using PCR, and 30% of the isolates were found to carry an arsenate reductase encoded by the arsC gene.

Effect of Methyl tert-butyl Ether and Its Metabolites on the Microbial Population: Comparison of Soil Samples from Rice Field, Leek Patch and Tidal Mud Flat (다양한 토양 환경에서 Methyl tert-Butyl Ether와 그의 대사산물이 노출되었을 때 미생물 군집에 미치는 영향: 논, 밭, 갯벌 시료 비교)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.403-413
    • /
    • 2008
  • Toxic effect of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on microbial activity and diversity was compared in rice field, leek patch, and tidal mud flat soil samples. MTBE, TBA and FA with different concentrations were added into microcosms containing these soil samples, and placed at room temperature for 30 days. Then the microbial activities such as dehydrogenase and viable cell numbers and microbial community using a DGGE (Denaturing gradient gel electrophoresis) fingerprinting method were measured. Among the samples, dehydrogenase activity in rice field was inhibited the most by MTBE, TBA and FA. The toxic effect was higher according to the following orders: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE, TBA and FA were Chloroflex, Bacilli, gamma-proteobacteria in the rice field sample, Sphingobacteria, Flavobacteria, Actinobacteria, Bacilli, gamma-proteobacteria in the leek patch sample, and Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria in the tidal mud flat sample.