Browse > Article

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis  

Ahn, Jae-Hyung (School of Agricultural Biotechnology, Seoul National University)
Kim, Min-Cheol (School of Agricultural Biotechnology, Seoul National University)
Shin, Hye-Chul (School of Agricultural Biotechnology, Seoul National University)
Choi, Min-Kyeong (School of Agricultural Biotechnology, Seoul National University)
Yoon, Sang-Seek (School of Agricultural Biotechnology, Seoul National University)
Kim, Tae-Sung (Ecosystem Disturbance Assessment Division, Nature and Ecology Research Department, National Institute of Environmental Research)
Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University)
Lee, Geon-Hyoung (Department of Biology, Kunsan National University)
Ka, Jong-Ok (School of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.10, 2006 , pp. 1561-1569 More about this Journal
Abstract
Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.
Keywords
PCR amplification bias; 16S rDNA sequence; bacterial community structure; denaturing gradient gel electrophoresis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
1 Ayyadevara, S., J. J. Thaden, and R. J. Shmookler Reis. 2000. Discrimination of primer 3'-nucleotide mismatch by Taq DNA polymerase during polymerase chain reaction. Anal. Biochem. 284: 11-18   DOI   ScienceOn
2 Bakken, L. R. and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13: 103-114   DOI   ScienceOn
3 Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhibiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346
4 Fromin, N., J. Hamelin, S. Tarnawski, D. Roesti, K. Jourdain-Miserez, N. Forestier, S. Teyssier-Cuvelle, F. Gillet, M. Aragno, and P. Rossi. 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 4: 634-643   DOI   ScienceOn
5 Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172   DOI
6 Rappe, M. S. and S. J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369-394   DOI   ScienceOn
7 Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630
8 Watanabe, I. and C. Furusaka. 1980. Microbial ecology of flooded rice soils. Adv. Microb. Ecol. 4: 125-168
9 Yu, Z. and M. Morrison. 2004. Comparison of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 4800-4806   DOI   ScienceOn
10 Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: Database issue D294-D296   DOI
11 Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755   DOI   ScienceOn
12 Dojka, M. A., P. Hugenholtz, S. K. Haack, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869-3877
13 Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630-4636
14 Gafan, G. P. and D. A. Spratt. 2005. Denaturing gradient gel electrophoresis gel expansion (DGGEGE) - an attempt to resolve the limitations of co-migration in the DGGE of complex polymicobial communities. FEMS Microbiol. Lett. 253: 303-307   DOI   ScienceOn
15 Hattori, T., H. Mitsui, H. Haga, N. Wakao, S. Shikano, K. Gorlach, Y. Kasahara, A. El-Beltagy, and R. Hattori. 1997. Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72: 21-28   DOI   ScienceOn
16 Wintzingerode, F. V., U. B. Gobel, and E. Stackerbrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229   DOI
17 Cho, W. S., E. H. Lee, E. H. Shim, J. S. Kim, H. W. Ryu, and K. S. Cho. 2005. Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952-964   과학기술학회마을
18 Ferris, M. J. and D. M. Ward. 1997. Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381
19 Ahn, J. H., M. S. Kim, M. C. Kim, H. C. Shin, J. S. Lim, G. T. Lee, J. K. Yun, and J. O. Ka. 0000. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715   과학기술학회마을
20 Yu, Z. and W. W. Mohn. 2001. Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Water Res. 35: 883-890   DOI   ScienceOn
21 Whiteley, A. S. and M. J. Bailey. 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66: 2400-2407   DOI
22 Vallaeys, T., E. Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud, and G. Soulas. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24: 279-285   DOI
23 Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, S. J. Kweon, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093   과학기술학회마을
24 Martin, F. H. and M. M. Castro. 1985. Base pairing involving deoxyinosine: Implications for probe design. Nucleic Acids Res. 13: 8927-8938   DOI   ScienceOn
25 Wu, Y., V. M. Hayes, J. Osinga, I. M. Mulder, M. W. G. Looman, C. H. C. M. Buys, and R. M. W. Hofstra. 1998. Improvement of fragment and primer selection for mutation detection by denaturing gradient gel electrophoresis. Nucleic Acids Res. 26: 5432-5440   DOI   ScienceOn
26 Harris, J. K., S. T. Kelley, and N. R. Pace. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70: 845-849   DOI
27 Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383   과학기술학회마을
28 Polz, M. F. and C. M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64: 3724-3730
29 Tiedje, J. M., S. Asuming-Brempong, K. Nusslein, T. L. Marsh, and S. J. Flynn. 1999. Opening the black box of soil microbial diversity. Appl. Soil Ecol. 13: 109-122   DOI   ScienceOn
30 Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127-141   DOI   ScienceOn
31 Pinhassi, J., M. M. Sala, H. Havskum, F. Peters, O. Guadayol, A. Malits, and C. Marrase. 2004. Change in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. 70: 6753-6766   DOI   ScienceOn
32 Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
33 Felsenstein, J. 2004. PHYLIP (Phylogenetic Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
34 Crump, B. C., C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2003. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Appl. Environ. Microbiol. 70: 1494-1505   DOI
35 Watanabe, K., Y. Kodama, and S. Harayam. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 44: 253-262   DOI   ScienceOn
36 Ritchie, N. J., M. E. Schutter, R. P. Dick, and D. D. Myrold. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66: 1668-1675   DOI
37 Hongoh, Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221: 299-304   DOI   ScienceOn
38 Lerman, L. S. and K. Silverstein. 1987. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 15: 482-501
39 Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the ${\beta}$ subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. 1997. Appl. Environ. Microbiol. 63: 1489-1497
40 Ferguson, R. L., E. N. Buckley, and A. V. Palumbo. 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47: 49-55