• 제목/요약/키워드: DG(Diesel Generator)

검색결과 10건 처리시간 0.022초

원전용 비상디젤발전기 국외 손상사례 분석에 관한 연구 (A Study on the Analysis of Failures Related to Emergency Diesel Generators in Overseas Nuclear Power Plants)

  • 장정환;김진성;정해동;조권회
    • 한국압력기기공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.32-37
    • /
    • 2009
  • The emergency diesel generator (EDG) in a nuclear power plant (NPP) shall start within 10 secondss and supply electrical power to engineered safety features within one minute and less if a loss of offsite power (LOOP), A design-basis event, or their combination occur. Each NPP has an EDG set consisting of two diesel generators for redundancy. In addition to the EDG set, an alternate Alternating Current Diesel Generator (AAC DG) is installed and shared by several units to cope with a station black out (SBO), i.e., loss of the offsite power concurrent with reactor trip and unavailability of the EDG set. The objective of this study is to analyze the failure data of emergency diesel generators reported in overseas nuclear power plants.

  • PDF

디젤발전기 원동기의 운전특성 시뮬레이션 (Simulation of Operation Performance for DG Prime Mover)

  • 최순만;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.166-177
    • /
    • 1997
  • The prime mover performance of on - board Diesel Generator is well characterized by the variation of frequency and the load sharing on parallel running under electric load change. This study is aimed to configure the modeling for performance simulation regarding to DG operation which could be interested for education purpose or system analysis. The modeling had been made on the base of modules such as govenor, prime mover of diesel engine and generator with electric load system, which were then intergrated for total simula¬tion performance. One real model system has been introduced for deciding relating parameters and for the comparison of resulting performance in simulation. The responses from the modelling were confirmed in single and paralell operation, the results of which showed resonable accordance with the real system.

  • PDF

디젤발전기가 포함된 독립형 마이크로그리드에서의 BESS 제어기법 및 운전모드 연구 (Control and Operating Modes of Battery Energy Storage System for a Stand-Alone Microgrid with Diesel Generator)

  • 조종민;안현성;김지찬;차한주
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.86-93
    • /
    • 2018
  • In this work, control methods and operating modes are proposed to manage standalone microgrid. A standalone microgrid generally consists of two sources, namely, battery energy storage system (BESS) and diesel generator (DG). BESS is the main source that supplies active and reactive power regardless of load conditions, whereas DG functions as an auxiliary power source. BESS operates in a constant voltage constant frequency (CVCF) control, which includes proportional-integral + resonant controller in a parallel structure. In CVCF control, the concept of fundamental positive and negative transformation is utilized to generate a three-phase sinusoidal voltage under imbalanced load condition. Operation modes of a standalone microgrid are divided into three modes, namely, normal, charge, and manual modes. To verify the standalone microgrid along with the proposed control methods, a demonstration site is constructed, which contains 115 kWh lead-acid battery bank, 50 kVA three-phase DC - AC inverter, and 50 kVA DG and controllable loads. In the CVCF control, the total harmonic distortion of output voltage is improved to 1.1% under imbalanced load. This work verifies that the standalone microgrid provides high-quality voltage, and three operation modes are performed from the experimental results.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

함정 디젤발전기 데이터기반 건전성 예측모델에 관한 연구 (Integrity Prediction Model of Data-driven Diesel Generator for Naval Vessels)

  • 김동진;심재순;김민곤
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.98-103
    • /
    • 2019
  • 함정 운용 장비의 건전성 예측은 유지보수의 효율성 및 긴박한 상황에서의 운용성능 유지를 위한 필수 요소이다. 최근 함정의 양적인 증가와 작전반경 확대에 따라 운용성능 유지를 위해 통합조건평가시스템(ICAS)을 도입하여 운용중이며, 관련기술 국산화를 위해 다각도로 연구가 진행되고 있다. 본 논문에서는 함정 운용 장비인 디젤발전기의 건전성 예측방법 중 데이터기반 모델 적용에 대한 결과를 제시 하였다.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법 (Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System)

  • 고은영;백자현;강태혁;한동화;조수환
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

원자력발전소 비상전력계통 강화 방안에 따른 리스크 영향 평가 (A Risk Impact Assessment According to the Reliability Improvement of the Emergency Power Supply System of a Nuclear Power Plant)

  • 전호준
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.224-228
    • /
    • 2012
  • According to the results of Probabilistic Safety Assessment(PSA) for a Nuclear Power Plant(NPP), an Emergency Power Supply(EPS) system has been considered as one of the most important safety system. Especially, the interests in the reliability of the EPS system have been increased after the severe accidents of Fukushima Daiichi. Firstly, we performed the risk assessment and the importance analysis of the EPS system based on the PSA models of the reference plant, which is the Korean standard NPP type. Considering a portable Diesel Generator(DG) system as the reliability reinforcement of the EPS system, we modified the PSA models and performed the risk impact assessment and the importance analysis. Although the reliability of the potable DG could be about 20% of the reliability of the alternative AC DG, we identified that Core Damage Frequency(CDF) was decreased by at least 4.6%. In addition, the risk impacts due to the unavailability of the EPS system on CDF were decreased.

가파도 마이크로그리드 신재생 에너지 전원 구성 방안 (Renewable Energy Configuration Plan of Micro Grid in Gapa Island)

  • 김동완;고지한;김승현;김호민;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.16-23
    • /
    • 2014
  • This paper presents a renewable energy configuration plan of Micro grid in Gapa Island. To analyze the characteristics of Micro grid, BESS (Battery Energy Storage System), PMSG (Permanent Magnet Synchronous Generator) and SCIG (Squirrel Cage Induction Generator) are first modelled. The PMSG and SCIG will operate with basis on the real power curve. when the total power demand is larger than the total power generation, the BESS will be operated and the SOC (State Of Charge) is reduced. If the value of SOC could drop down to limited value, the system may be broken because of the voltage drop of BESS. To solve this problem, a DG (Diesel Generator) is used to charge the BESS and keep the voltage value of BESS with in a allowance limit. This paper represents simulation result when PMSG, SCIG connected to the Micro grid installed in Gapa Island. The simulation is carry out by using PSCAD/EMTDC program with actual line constant and transformer parameter in Gapa Island.

30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구 (Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System)

  • 페레이라 마리토;이후동;태동현;노대석
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.662-671
    • /
    • 2020
  • 최근, 국·내외적으로 CO2배출의 저감을 위한 기술적인 방안 중 하나로 도서지역의 마이크로그리드에 기 설치된 디젤발전기의 가동률을 줄이고 신재생에너지전원의 비중을 높여 운용하고 있는 실정이다. 특히, 국내에서는 가파도, 가사도, 울릉도 등의 도서지역에 디젤발전기와 신재생에너지, 전기저장장치로 구성된 독립형 마이크로그리드의 실증 및 보급 사업이 활발하게 진행되고 있으며, 기존의 디젤발전기 대신 정전압, 정주파수(constant voltage constant frequency, CVCF) 기능을 가진 CVCF 인버터 및 CVCF 인버터용 배터리를 도입하여 마이크로그리드를 안정적으로 운용하는 연구들이 진행되고 있다. 그러나, CVCF 인버터 기반 마이크로그리드의 정상상태 운용특성에 있어서, 출력이 불안정한 태양광전원과 풍력발전과 같은 신재생에너지전원이 계통에 연계되면서 전력품질에 많은 문제가 발생하고 있다. 따라서, 본 논문에서는 신재생에너지전원과 전기저장장치 연계에 따른 마이크로그리드의 운용특성을 분석하기 위하여, PSCAD/EMTDC를 이용하여 30kW급 마이크로그리드 시스템을 모델링하고, 이를 바탕으로 마이크로그리드 시험장치를 구현한다. 30kW급 마이크로그리드 시스템을 바탕으로 시뮬레이션 및 시험을 수행한 결과, 제안한 방법이 CVCF 인버터 기반의 마이크로그리드 시스템에서 저전압, 과전압 및 불평형 문제를 개선하는 데 유용함을 확인하였다.