• Title/Summary/Keyword: DFT-based

Search Result 300, Processing Time 0.028 seconds

Frequency Estimation Technique using Recursive Discrete Wavelet Transform (반복 이산 웨이브릿 변환을 이용한 주파수 추정 기법)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • Power system frequency is the main index of power quality indicating an abnormal state and disturbances of systems. The nominal frequency is deviated by sudden change in generation and load or faults. Power system is used as frequency relay to detection for off-nominal frequency operation and connecting a generator to an electrical system, and V/F relay to detection for an over-excitation condition. Under these circumstances, power system should maintain the nominal frequency. And frequency and frequency deviation should accurately measure and quickly estimate by frequency measurement device. The well-known classical method, frequency estimation technique based on the DFT, could be produce the gain error in accuracy. To meet the requirements for high accuracy, recently Wavelet transforms and analysis are receiving new attention. The Wavelet analysis is possible to calculate the time-frequency analysis which is easy to obtain frequency information of signals. However, it is difficult to apply in real-time implementation because of heavy computation burdens. Nowadays, the computational methods using the Wavelet function and transformation techniques have been searched on these fields. In this paper, we apply the Recursive Discrete Wavelet Transform (RDWT) for the frequency estimation. In order to evaluate performance of the proposed technique, the user-defined arbitrary waveforms are used.

Polyphase Structure for Fractional Ratio Oversampling (비정수배 과표본화를 위한 폴리페이즈 구조)

  • 이혁재;박영철;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1106-1113
    • /
    • 2000
  • In this, paper, a DFT based polyphase filter bank for the fractional ratio oversampling is proposed. Proper fractional oversampling ratio gives lower aliasing than the critical sampling and, at the same time, lower computational load than the integer ratio oversampling. In addition, filter bank design becomes easier by the reduced aliasing effect of fractional ratio oversampling. Proposed fractional ratio oaversampling polyphase structure is applied to a subband adaptive filter for acoustic echo cancellation where long adaptive filter are ofter required. Echo cancellation results show that fractional ratio oversampling gives comparable performance to the integer ratio oversampling with less computational load.

  • PDF

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Application of Wavelet Transform for Fault Discriminant of Generator (발전기의 고장 판별을 위한 웨이브릿 변환의 적용)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Generators are the most complex and expensive single element in a power system. The generator protection relays should to minimize damage during fault states and must be designed for maximum reliability. A conventional CDR(Current Differential Relaying) technique based on DFT(Discrete Fourier Transform) filter have the disadvantages that the time information can lead to loss in the process of converting the signal from the time domain to the frequency domain. A WT(Wavelet transform) and WT analysis is known that it is possible with the local analysis of the fault and transient signal. In this paper, to overcome the defects in the DFT process, an application of WT for fault detection of generator is presented. This paper describes an selection of mother Wavelet to detect faults of generator. Using collected data from the fault simulation with ATPdraw, we analyzed the several mother Wavelet through the course of MLD(multi-level decomposition) using MATLAB software. Finally, it can be seen that the proposed technique using detail coefficient of Daubechies level 2 which can be fault discriminant of generator.

A Prony Method Based on Discrete Fourier Transform for Estimation- of Oscillation Mode in Power Systems (이산푸리에변환에 기초한 Prony 법과 전력계통의 진동모드 추정)

  • Nam Hae-Kon;Shim Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.293-305
    • /
    • 2005
  • This paper describes an improved Prony method in its speed, accuracy and reliability by efficiently determining the optimal sampling interval with use of DFT (discrete Fourier transformation). In the Prony method the computation time is dominated by the size of the linear prediction matrix, which is given by the number of data times the modeling order The size of the matrix in a general Prony method becomes large because of large number of data and so does the computation time. It is found that the Prony method produces satisfactory results when SNR is greater than three. The maximum sampling interval resulting minimum computation time is determined using the fact that the spectrum in DFT is inversely proportional to sampling interval. Also the process of computing the modes is made efficient by applying Hessenberg method to the companion matrix with complex shift and computing selectively only the dominant modes of interest. The proposed method is tested against the 2003 KEPCO system and found to be efficient and reliable. The proposed method may play a key role in monitoring in real time low frequency oscillations of power systems .

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

A Study on Performance Enhancement of Distance Relaying by DC Offset Elimination Filter (직류옵셋제거필터에 의한 거리계전기법의 성능 개선에 관한 연구)

  • Lee, Kyung-Min;Park, Yu-Yeong;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • Distance relay is widely used for the protection of long transmission line. Most of distance relay used to calculate line impedance by measuring voltage and current using DFT. So if there is a computation error due to the influence of phasor by DC offset component, due to excessive vibration by measuring line impedance, overreach or underreach can be occurs, and then abnormal and non-operation of distance relay can be issue. It is very important to implement the robust distance relaying that is not affected by DC offset component. This paper describes an enhanced distance relaying based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any prior information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced distance relay uses fault current as well as residual current. The behavior of the proposed distance relaying using off-line simulation has been verified using data about several fault conditions generated by the ATP simulation software.

Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis (유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템)

  • Lee, Dae-Jong;Cho, Jae-Hoon;Yun, Jong-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.380-387
    • /
    • 2010
  • For the fault diagnosis of three-phase induction motors, we propose a diagnosis algorithm based on mutual information and linear discriminant analysis (LDA). The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by mutual information As the next step, feature extraction is performed by LDA, and then diagnosis is evaluated by k-NN classifier. The results to verify the usability of the proposed algorithm showed better performance than various conventional methods.

Theoretical studies on the stabilization and diffusion behaviors of helium impurities in 6H-SiC by DFT calculations

  • Obaid Obaidullah;RuiXuan Zhao;XiangCao Li;ChuBin Wan;TingTing Sui;Xin Ju
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2879-2888
    • /
    • 2023
  • In fusion environments, large scales of helium (He) atoms are produced by a radical transformation along with structural damage in structural materials, resulting in material swelling and degradation of physical properties. To understand its irradiation effects, this paper investigates the stability, electronic structure, energetics, charge density distribution, PDOS and TDOS, and diffusion processes of He impurities in 6HSiC materials. The formation energy indicates that a stable, favorable position for interstitial He is the HR site with the lowest energy of 2.40 eV. In terms of vacancy, the He atom initially prefers to substitute at pre-existing Si vacancy than C vacancy due to lower substitution energy. The minimum energy paths (MEPs) with migration energy barriers are also calculated for He impurity by interstitial and vacancy-mediated diffusion. Based on its calculated energy barriers, the most possible diffusion path includes the exchange of interstitial and vacancy sites with effective migration energies ranging from 0.101 eV to 1.0 eV. Our calculation provides a better understanding of the stabilization and diffusion behaviors of He impurities in 6H-SiC materials.

A study on robust generalized cross correlation-phase transform based time delay estimation in impulsive noise environment using nonlinear preprocessing and frequency domain low-pass filter (비선형 전처리와 주파수 영역 저역 필터에 의한 임펄스성 잡음 환경에 강인한 위상 변환 일반 상호 상관 시간 지연 추정기 연구)

  • Jun-Seok Lim;Keunwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.406-413
    • /
    • 2024
  • The proposed method uses Generalized Cross Correlation - Phase Transform (GCC-PHAT) method with nonlinear preprocessing and a frequency domain low-pass filter. In this paper, by reinterpreting the calculation process of GCC-PHAT as DFT, we derive that there is an effective frequency band used for time delay estimation in GCC-PHAT, and by using only the effective band using a low-pass filter, the noise component is reduced and it improvesthe time delay performance in impulsive noise environments. By comparing the proposed method with the traditional GCC-PHAT in an impulsive noise environment, we show that the GCC-PHAT becomes more robust to the impulsive noise.