• Title/Summary/Keyword: DFN 모델

Search Result 19, Processing Time 0.026 seconds

A Study on Applicability of Equivalent Continuum Flow Model in DFN Media (DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구)

  • Lee, Dahye;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 2017
  • The correlation analysis between the results obtained from DFN flow model and equivalent continuum flow model were conducted on total of 72 DFN blocks having various fracture geometry and domain size. A strong linear relation seems to exist between the two approaches under condition that normalized relative error for continuum behavior (ER) is less than 0.2, and the results from both methods are found to almost identical. To explore the field applicability of equivalent continuum flow model in DFN media, a total of 48 numerical schemes related to inflow of underground circular openings were implemented under various DFN configurations. The equivalent continuum flow model in DFN media with a constant hydraulic aperture was evaluated as valid. However, as the anisotropy increases due to variation of the hydraulic aperture, the results are likely to be overestimated compare to the DFN flow model.

Calculation of Equivalent Block Permeabilities using HydroDFN Model Analysis in Jointed Rocks (균열 암반에서의 HydroDFN 모델 해석을 이용한 등가블록투수계수의 계산)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Shin, Hee-Soon;Tanaka, Tatsuya;Park, Eui-Seop
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.234-243
    • /
    • 2007
  • In this paper, it was aimed to enhance core processes required in establishing hydrogeological models constructed using borehole investigation results. Water Conducting Feature(WCF) information was extracted from borehole investigation, and HydroDFN model was constructed based on the WCF information. The HydroDFN model was sub-divided by cubic blocks, and equivalent permeability of each sub-divided block was calculated and compared with the results of hydraulic test at the borehole. Through these analysis processes, suggestion for identifying and prescribing WCF parameters in the construction of HydroDFN model was made.

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

Research Trend of DFN Modeling Methodology: Representation of Spatial Distribution Characteristics of Fracture Networks (DFN 모델링 연구 동향 소개: 균열망의 공간적 분포 특성 모사를 중심으로)

  • Jineon, Kim;Jiwon, Cho;iIl-Seok, Kang;Jae-Joon, Song
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.464-477
    • /
    • 2022
  • DFN (discrete fracture network) models that take account of spatial variability and correlation between rock fractures have been demanded for analysis of fractured rock mass behavior for wide areas with high reliability, such as that of underground nuclear waste repositories. In this regard, this report describes the spatial distribution characteristics of fracture networks, and the DFN modeling methodologies that aim to represent such characteristics. DFN modeling methods have been proposed to represent the spatial variability of rock fractures by defining fracture domains (Darcel et al., 2013) and the spatial correlation among fractures by genetic modeling techniques that imitate fracture growth processes (Davy et al., 2013, Libby et al., 2019, Lavoine et al., 2020).These methods, however, require further research for their application to field surveys and for modeling in-situ rock fracture networks.

A Methodology to Formulate Stochastic Continuum Model from Discrete Fracture Network Model and Analysis of Compatibility between two Models (개별균열 연결망 모델에 근거한 추계적 연속체 모델의 구성기법과 두 모델간의 적합성 분석)

  • 장근무;이은용;박주완;김창락;박희영
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.156-166
    • /
    • 2001
  • A stochastic continuum(SC) modeling technique was developed to simulate the groundwater flow pathway in fractured rocks. This model was developed to overcome the disadvantageous points of discrete fracture network(DFN) modes which has the limitation of fracture numbers. Besides, SC model is able to perform probabilistic analysis and to simulate the conductive groundwater pathway as discrete fracture network model. The SC model was formulated based on the discrete fracture network(DFN) model. The spatial distribution of permeability in the stochastic continuum model was defined by the probability distribution and variogram functions defined from the permeabilities of subdivided smaller blocks of the DFN model. The analysis of groundwater travel time was performed to show the consistency between DFN and SC models by the numerical experiment. It was found that the stochastic continuum modes was an appropriate way to provide the probability density distribution of groundwater velocity which is required for the probabilistic safety assessment of a radioactive waste disposal facility.

  • PDF

Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses (균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교)

  • Min, Ki-Bok;Thoraval, Alain
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.93-105
    • /
    • 2012
  • This paper compares the two- and three-dimensional (2D and 3D) approaches for the numerical determination of the equivalent mechanical properties of fractured rock masses. Both orthogonally-fractured model and discrete fracture networks (DFN) were used for the geometry and 2D models were cut in various directions from 3D model to compare their mechanical properties. Geological data were loosely based on the data available from Sellafield, UK. Analytical method based on compliance tensor transformation was used for investigation in orthogonally fractured rock and numerical experiments were conducted on fractured rock mass with DFN geometry. It is shown that 2D approach always overestimates the elastic modulus of fractured rock masses by a factor of up to around two because fractures are assumed to be perpendicular to the model plane in 2D problems. Poisson ratios tend to have larger values in 2D analysis while there is opposite trend in some sections. The study quantitatively demonstrates the limitation of the 2D approach that uses the simplified model from true 3D geometry.

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF

Sensitivity Analyses of Three-Dimensional Discrete Fracture Network Modeling of Rock Mass (암반의 3차원 불연속균열망(DFN)에 관한 연구 및 민감도분석)

  • Park, Jung Chan;Park, Seung Hun;Kim, Ha Yung;Kim, Geon-Young;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.341-358
    • /
    • 2015
  • This study analyzes the relationship between parameters of the discontinuity in Discrete Fracture Network model such as fracture intensity, fracture orientation, fracture size, fracture shape etc. In this paper, FracMan code was used to model and analyze 3D DFN. A sensitivity analysis was performed in order to analyze the relationship between linear fracture intensity measure ($P_{10}$) and parameters of the discontinuity in $100m{\times}100m{\times}100m$ model area. As a result the sensitivity analysis showed that key parameters affecting fracture intensity are fracture orientation (Trend / Plunge). Conversion factor($C_{13}$) for $P_{10}$, to calculate volumetric fracture intensity measure ($P_{32}$), is derived in case of vertical well and horizontal well when trend is $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$ (7cases) and plunge is $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$ (7cases). It is expected that this paper can be used effectively for modeling and understanding DFN model.