DOI QR코드

DOI QR Code

Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses

균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교

  • Received : 2012.03.19
  • Accepted : 2012.04.17
  • Published : 2012.04.30

Abstract

This paper compares the two- and three-dimensional (2D and 3D) approaches for the numerical determination of the equivalent mechanical properties of fractured rock masses. Both orthogonally-fractured model and discrete fracture networks (DFN) were used for the geometry and 2D models were cut in various directions from 3D model to compare their mechanical properties. Geological data were loosely based on the data available from Sellafield, UK. Analytical method based on compliance tensor transformation was used for investigation in orthogonally fractured rock and numerical experiments were conducted on fractured rock mass with DFN geometry. It is shown that 2D approach always overestimates the elastic modulus of fractured rock masses by a factor of up to around two because fractures are assumed to be perpendicular to the model plane in 2D problems. Poisson ratios tend to have larger values in 2D analysis while there is opposite trend in some sections. The study quantitatively demonstrates the limitation of the 2D approach that uses the simplified model from true 3D geometry.

균열암반의 등가역학적 물성을 수치해석적으로 결정할 때 2차원 및 3차원 해석을 비교하였다. 수직균열모델과 암반균열망(DFN) 모델이 균열암반의 형상으로 이용되었으며 3차원 모델으로부터 다양한 방향으로 2차원 모델을 절단하여 역학적 물성을 비교하였다. 본 연구의 지질데이터는 영국 셀라필드 지역의 자료를 기본으로 사용하였다. 직교균열모델에서는 컴플라이언스텐서의 변환을 이용한 해석적 방법이 물성결정을 위해 이용되었으며 암반균열망모델에서는 수치실험이 실시되었다. 2차원 모델에서는 균열이 항상 모델평면과 직교한다고 가정하기 때문에 탄성계수는 항상 3차원보다 크게 계산이 되었다. 2차원 해석에서의 포아송비는 3차원 해석보다 큰 값을 나타내는 경향이 있었으나 반대의 경향도 관찰되었다. 본 논문은 3차원 형상을 단순화시켜 사용하는 2차원 해석의 한계를 정량적으로 고찰하였다는데 의의가 있다.

Keywords

References

  1. Amadei, B. and R.E. Goodman, 1981, A 3-D constitutive relation for fractured rock masses, In Selvadurai APS (Ed), Proc. Int Symp on the mechanical behavior of structured media, Ottawa, Part B, 249-268.
  2. Barton, N., 2002, Some new Q-value correlations to assist in site characterization and tunnel design, Int. J. Rock. Mech. Min. Sci.39.2, 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4
  3. Bieniawski, Z.T., 1978, Determining rock mass deformability: Experience from case histories, Int. J. Rock. Mech. Min. Sci.&Geomech. Abstr.15.5, 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  4. Damjanac, B., 1994, A three-dimensional numerical model of water flow in a fractured rock mass, Ph.D. Thesis, University of Minnesota.
  5. Heliot, D., 1988. Generating a Blocky Rock Mass, Int. J. Rock. Mech. Min. Sci.&Geomech. Abstr.25.3, 127-138.
  6. Hoek, E. and E.T. Brown, 1997, Practical estimates of rock mass strength, Int. J. Rock. Mech. Min. Sci.34.8, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  7. Itasca Consulting Group, 1994, 3DEC 3-Dimensional Distinct Element Code, Minnesota.
  8. Itasca Consulting Group, 2000, UDEC user's guide, Minnesota.
  9. Johansson, E., M. Hakala, E. Peltonen, J.-P. Salo and L.J. Lorig, 1991, Comparisons of computed two- and threedimensional thermomechanical response of jointed rock, 7th ISRM Congress, 115-119.
  10. Lekhnitskii, S.G., 1963, Theory of elasticity of an anisotropic elastic body, Holden Day, Inc. San Francisco.
  11. Martin, D., P.K. Kaiser and R. Christiansson, 2003, Stress, instability and design of underground excavations, Int. J. Rock Mech. Min. Sci.40.7-8, 1027-1047. https://doi.org/10.1016/S1365-1609(03)00110-2
  12. Min, K.-B. and L. Jing, 2003, Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method, Int. J. Rock Mech. Min. Sci.40.6, 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
  13. Min, K.-B. and L. Jing, 2004, Stress dependent mechanical properties and bounds of Poisson's ratio for fractured rock masses investigated by a DFN-DEM technique, Int. J. Rock Mech. Min. Sci.41.3, 431-432. https://doi.org/10.1016/j.ijrmms.2003.12.072
  14. Min, K.-B. and O. Stephansson, 2011, The DFN-DEM Approach applied to investigate the effects of stress on mechanical and hydraulic rock mass properties at Forsmark, Sweden, J. Korean Society for Rock Mech., Tunnel and Underground Space, 21.2, 117-127.
  15. Thoraval, A. T. and V. Renaud, 2003, Hydro-mechanical upscaling of a fractured rockmass using a 3D numerical approach, GeoProc 2003, Int. Conf. Coupled THMC processes in Geosystems, Stockholm, 263-268.