• Title/Summary/Keyword: DFE

Search Result 151, Processing Time 0.027 seconds

Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition (천해환경에서 적응 알고리즘을 이용한 음향 등화기의 성능 비교)

  • Chuai, Ming;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2018
  • The acoustic communication channel in shallow underwater is typically shown as time-varying multipath fading channel characteristics. The received signal through channel transmission cause inter-symbol interference (ISI) owing to multiple components of different time delay and amplitude. To compensate for this, several techniques have been used, and one of them is acoustic equalizer. In this study, we used four equalizers - feed forward equalizer (FFE), decision directed equalizer (DDE), decision feedback equalizer (DFE) and combination DDE with DFE to compensate ISI. And we applied two adaptive algorithms to adjust coefficient of equalizers - normalized least mean square algorithm and recursive least square algorithm. As result, we found that it has a significant performance improvement over 6 dB on SNR in nonlinear equalizer. By combination of DFE and DDE has almost best performance in any case.

Design of a High-speed Decision Feedback Equalizer using the Constant-Modulus Algorithm (CMA 알고리즘을 이용한 고속 DFE 등화기 설계)

  • Jeon, Yeong-Seop;;Kim, Gyeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.173-179
    • /
    • 2002
  • This paper describes an equalizer using the DFE (Decision Feedback Equalizer) structure, CMA (Constant Modulus Algorithm) and LMS (Least Mean Square) algorithms. The DFE structure has better channel adaptive performance and lower BER than the transversal structure. The proposed equalizer can be used for 16/64 QAM modems. We employ high speed multipliers, square logics and many CSAs (Carry Save Adder) for high speed operations. We have developed floating-point models and fixed-point models using the COSSAP$\^$TM/ CAD tool and developed VHDL filter. The proposed equalizer shows low BER in multipath fading channel. We have performed models. From the simulation results, we employ a 12 tap feedback filter and a 8 tap feedforward logic synthesis using the SYNOPSYS$\^$TM/ CAD tool and the SAMSUNG 0.5$\mu\textrm{m}$ standard cell library (STD80) and verified function and timing simulations. The total number of gates is about 130,000.

Design of 10-Gb/s Adaptive Decision Feedback Equalizer with On-Chip Eye-Opening Monitoring (온 칩 아이 오프닝 모니터링을 탑재한 10Gb/s 적응형 Decision Feedback Equalizer 설계)

  • Seong, Chang-Kyung;Rhim, Jin-Soo;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • With the increasing demand for high-speed transmission systems, adaptive equalizers have been widely used in receivers to overcome the limited bandwidth of channels. In order to reduce the cost for testing high-speed receiver chips, on-chip eye-opening monitoring (EOM) technique which measures the eye-opening of data waveform inside the chip can be employed. In this paper, a 10-Gb/s adaptive 2-tap look-ahead decision feedback equalizer (DFE) with EOM function is proposed. The proposed EOM circuit can be applied to look-ahead DFEs while existing EOM techniques cannot. The magnitudes of the post-cursors are measured by monitoring the eye of received signal, and coefficients of DFE are calculated using them by proposed adaptation algorithm. The circuit designed in 90nm CMOS technology and the algorithm are verified with post-layout simulation. The DFE core occupies $110{\times}95{\mu}m^2$ and consumes 11mW in 1.2V supply voltage.

The Concept of Industrial Ecology (산업 생태학의 개념)

  • Choi, Woo Zin;Hong, Soon Sung
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.32-43
    • /
    • 1996
  • The interactions of the societal-industrial system with the environment form one of the most critical issues in today's world. The inadequacy of current environmental regulatory structures and of traditional ways of analyzing environmental issues, together with the continuing need to mitigate the environmental perturbations arising from this complex relationship, have led to the development of a new conceptual framework termed industrial ecology. Industrial ecology (IE), defined by Graedel and Allenby, is the means by which humanity can deliberately and rationally approach and maintain a desirable carrying capacity, given continued economic, cultural and technological evolution. The concept requires that an industrial system be viewed not in isolation from its surrounding systems, but in concert with them. IE is a systems view in which one seeks to optimize the total materials cycle from virgin material, to finished material, to component, to product, to obsolete product, and to ultimate disposal. Factors to be optimized include resources, energy, and capital. In the present paper, the concept of Industrial Ecology and its application through efficient and practical Design for Environment (DFE) methodologies and tools will be introduced to Korea. This paper will also emphasis on the industrial environment within which DFE methodologies must be used, including the fundamentals of industrial design activities, concurrent engineering, constraints on design choices and existing technological infrastructure.

  • PDF

A Computationally Efficient Sphere Decoding Algorithm with Smart Radius Control (스마트 반지름 제어를 사용한 효율적인 구복호 알고리즘)

  • Han, Hee-Goo;Oh, Seong-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.93-96
    • /
    • 2005
  • We propose a computationally efficient sphere decoding (SD) algorithm with smart radius control (SRC). As a baseline algorithm for SD, we consider the modified Schnorr-Euchner (SE) algorithm [1] (hereafter, called as the MSE algorithm). In principle, the radius after zero-forcing decision feedback equalization (ZF-DFE) estimation can be reduced further if we select a new lattice vector closer to the received signal vector than the lattice vector corresponding to the ZF-DFE estimate does. In our case, we obtain such a better lattice vector by performing a sequence of alternating one-dimensional searches, starting from the ZF-DFE estimate. We then develop a novel SRC algorithm that adopts adaptively the additional radius reduction process according to the estimated signal-to-noise-power ratio (SNR) after ZF-DFE estimation. In addition, we analyze the effect of detection ordering on the complexity for SD. Column-norm ordering of the channel matrix and optimal ordering [1] are considered here. From our analyses, we see that SRC can reduce greatly the complexity for SD and the degree of complexity reduction gets significant as the SNR decreases, irrespective of detection ordering schemes used.

  • PDF

Joint Scheme of IQ Imbalance Compensation and AGC for Optimal DFE in M-WiMAX Mobile Modem (M-WiMAX 시스템의 DFE 최적화를 위한 IQ 불균형 보상과 AGC 결합 기법)

  • Kim, Jong-Hun;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.341-346
    • /
    • 2009
  • M-WiMAX (Mobile-Worldwide Interoperability for Microwave Access) system, which uses OFDM (Orthogonal Frequency Division Multiplexing) technique, is known to be proper for mobile high-speed data transmission system. Nevertheless, M-WiMAX is seriously sensitive to IQ imbalance caused by the LO (Local Oscillator) at the receiver. In this paper, we analyze the effect of IQ imbalance on the system, and then propose a joint optimization scheme that can optimize DFE (Digital Front-end) of mobile modem by combining operation duplicated between AGC (Automatic Gain Control) and the estimation and compensation of IQ imbalance. Simulation results show that the proposed scheme achieves the same performance of the conventional scheme while reducing the complexity of the H/W implementation.

격자코드 변조 시스템에서 DFE의 심볼판정 알고리즘 제안 (Symbol Detection Methods for DFEs in Trellis Coded Modulation Systems)

  • Chung, Won-Zoo
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.69-74
    • /
    • 2006
  • In this paper, we present symbol detection methods for decision feedback equalizers (DFE) in trellis coded modulation systems. The proposed symbol detectors improve symbol error rate (SER) by exploiting the coding structure of trellis coded modulation (TCM). For example, for 8-PAM signals the achieved SER with the proposed detection scheme is improved to $2{\times}10^{-5}$ from $2.5{\times}10^{-2}$ of the conventional symbol-by-symbol detector under AWGN channel at 20dB SNR. This SER improvements mitigate error propagation of DFE.and produces significant over-all SER improvement for under multipath channels (for example, from 0.26 to 0.01 and 0.005 under a severe multipath channel 20dB SNR as shown in the simulation result of this paper).

  • PDF

A Study on the Frequency Detection of PRCPM Signals Using the DFE Scheme in Fast Fading Channels (고속 페이딩 채널에서 DFE 기법을 적용한 PRCPM신호의 주파수 검파에 관한 연구)

  • 박길재;강민구;김종일;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.413-423
    • /
    • 1991
  • Some digital partical response continuous phase modulation signals such as 3RC, 3SRC, 4SRC, and TFM have cconstant envelope characteristics and compact power spectra. However, their bit error rates in fast fading environments are too high when a simple frequency detection is used. This is due to high inter symbol interference resulting from adjacent bits. The improvement of BER performance by using DFE(Decision Feedback Equalization) to cancel the ISI of one adjacent bit is theoretically investigated in this paper. Numerical resuls are presentes to compare the BER performance of frequency detection with and without decision feedback equalization.

  • PDF

Robust Decision Feedback Equalizer for OFDM System under Severe ISI Channel

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1914-1925
    • /
    • 2014
  • Inter-symbol interference (ISI) problem is inevitable when the guard interval (GI) is shorter than the delay spread (DS) for an orthogonal frequency division multiplexing (OFDM) system. Iterative techniques have been proposed to overcome such a problem. However, most of existing algorithms are not efficient for an OFDM system with a small GI working under the channel with a large DS. Especially in the case of the DS spans a longer time than the half of the OFDM symbol duration. On the other hand, conventional algorithms, which can reduce the effects of the severe ISI, often employ several impractical assumptions to support the conclusions. In this paper, we present a robust decision feedback equalizer (DFE) for the OFDM system to overcome the severe ISI problem. The proposed DFE removes the ISI in a same manner as the residual inter-symbol interference cancellation (RISIC) algorithm. However, the inter-carrier interference (ICI) is reduced via cyclicity removal instead of the cyclicity restoration used in the conventional algorithms. The link-level simulation (LLS) results indicate that our proposed DFE scheme can dramatically improve the BER performance when the DS spans longer than the half of ODFM symbol duration.