• Title/Summary/Keyword: DEVS Modeling

Search Result 165, Processing Time 0.023 seconds

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.

Development of Real Time Simulation Environment Based on DEVS Formalism Applicable to Avionics System Integration Laboratory (항공용 SIL에 적용 가능한 DEVS 형식론 기반의 시뮬레이션 환경 개발)

  • Seo, Min-gi;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.345-351
    • /
    • 2019
  • Avionics System Integration Laboratory is an integrated test environment for the integration and the verification of avionics systems. Recently, in order to fully consider the requirements verification of avionics system from the aspect of the entire system integration, the participation in the development of the SIL field is advanced from the requirement analysis of the aircraft. Efforts are being made to minimize the cost and the period of development of a SIL so that it does not affect the overall schedule of the aircraft development. We propose the avionics simulation model framework (ASMF) based on the modeling formalism applicable to SIL in order to reduce development period/cost and increase maintenance by standardizing the modeling methods of SIL.

Modeling and Simulation for Performance Evaluation of VoIP Spam Detection Mechanism (VoIP 스팸 탐지 기술의 성능 평가를 위한 모델링 및 시물레이션)

  • Kim, Ji-Yeon;Kim, Hyung-Jong;Kim, Myuhng-Joo;Jeong, Jong-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.95-105
    • /
    • 2009
  • Spam call is one of the main security threat in VoIP services. In this paper, we have designed simulation model for performance evaluation of VoIP spam defense mechanism. The simulation model has functions for performance evaluation such as calls generation and input/output comparison. Four representative caller models have been developed for performance evaluation and each model has its own characteristics as statistical parameters. The target mechanism of performance evaluation is SPIT(Spam over Internet Telephony) level decision algorithm, and we have derived SPIT levels of caller models. The performance evaluation model is designed using the DEVS formalism and DEVSJAVA$^{TM}$ is exploited for development and execution of simulation models.

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케줄링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.

  • PDF

Improving Extensibility of DEVS Simulation Environment with Model Base by using Event Control Model Templates (이벤트 제어 모델 템플릿을 사용한 모델 라이브러리 기반 DEVS 시뮬레이션 환경의 확장성 개선)

  • Kwon, Se Jung;Lee, Jun Hee;Choi, Changbeom;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.91-99
    • /
    • 2018
  • Discrete event simulation environments often need to be modified because additional questions to systems may become apparent while observing the simulation results repeatedly. It leads to increasing development budget and depreciating the effectiveness of the environment. To avoid the modifications and to generate the altered results, this paper applies an Event Control Model (ECM) with control functions that modulate, delete and generate the events at the simulation time. In addition, this paper suggests an easier approach for domain-users, who do not want to program at source code level, by using ECM templates. The simulators with the ECMs can have better extensibility because it becomes more adaptable to possibly unanticipated changes. It prevents increasing development costs due to modifications or development of new models by M&S experts, and it provides a new alternative step to domain users. To support the effectiveness of this approach, this paper describes a relevant example, which is composed of an initial simulation model based on our empirical studies. It will show that there exist the uncountable benefits because the existing simulator is reused by domain users without new projects.

Modeling and Simulation for using Multiple Routing Protocols in Wireless Sensor Networks (무선 센서 네트워크에서 다중 라우팅 프로토콜 사용을 위한 모델링과 시뮬레이션)

  • Nam, Su Man;Cho, Tae Ho;Kim, Hyung Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2020
  • In the fourth industrial revolution, wireless sensor networks (WSNs) are an important element of collecting and analyzing data in a variety of environments without human intervention. This sensor network is greatly affected by topology and routing protocols. Routing protocols, which affect energy consumption, are executed after deploying sensor nodes. Once built, they are difficult to change. Before the WSN is deployed, a routing protocol is carefully selected in view of various environments and the performance of the protocol is evaluated. In this paper, we propose a model to simulate multiple routing protocols using a discrete event system specification (DEVS). The DEVS-based proposed model simulates various situations without changes and structures of the its model as algorithms of the routing protocols are implemented in its coordinators model. To verify normal behaviors of the proposed model, the number of report delivery and the energy consumption of the sensor network were compared using representative protocols LEACH and Dijkstra. As a result, it was confirmed that the proposed model executes normally in both routing protocols.

System of Systems Approach to Formal Modeling of CPS for Simulation-Based Analysis

  • Lee, Kyou Ho;Hong, Jeong Hee;Kim, Tag Gon
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.175-185
    • /
    • 2015
  • This paper presents a system-of-systems (SoS) approach to the formal modeling of a cyber-physical system (CPS) for simulation-based analysis. The approach is based on a convergence technology for modeling and simulation of a highly complex system in which SoS modeling methodology, hybrid systems modeling theory, and simulation interoperation technology are merged. The methodology maps each constituent system of a CPS to a disparate model of either continuous or discrete types. The theory employs two formalisms for modeling of the two model types with formal specification of interfaces between them. Finally, the technology adapts a simulation bus called DEVS BUS whose protocol synchronizes time and exchange messages between subsystems simulation. Benefits of the approach include reusability of simulation models and environments, and simulation-based analysis of subsystems of a CPS in an inter-relational manner.

DEVSIF Composer: A Synthesis Tool for Fast Interpretation of Simulation Models

  • Lee, Wan-Bok
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.59-63
    • /
    • 2008
  • The methods or algorithms which can accelerate simulation speed became of great importance, as the modeling and simulation methodology for discrete event systems is used in many areas such as model validation/verification and performance evaluation. This paper proposes a tool named, DEVSIF composer. The tool is made of an automated compiled simulation technology and it builds a new composed model which can be executed much fast by composing the component models together. Models are described by our new specification language DEVSIF, which is compatible with object-oriented language and supports representation of a hierarchical model structure. Experimental results demonstrates that DEVSIF composer enhances the simulation speed of a transformed DEVS model 5 times faster than that of the original ones in average.

Modeling and Simulation of the Efficient Certificate Status Validation System on Public Key Infrastructure (공개키 기반 구조에서의 효율적인 인증서 상태 검증 방법에 관한 모델링 및 시뮬레이션)

  • 최지혜;조대호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.7-12
    • /
    • 2004
  • 공개키 기반 구조(PKI; Public Key Infrastructure)에 필수적인 요소인 인증서의 상태 검증에 있어서 인증서 상태 검증 서버인 OCSP (Online Certificate Status Protocol) 서버는 실시간 상태 검증을 제공한다. 그러나, 서버와 클라이언트의 메시지 인증을 위해 전자 서명을 수행해야 하며, 이 때 사용되는 공개 암호 연산 과정의 복잡성은 동시에 많은 클라이언트의 요청이 발생할 경우에 응답 시간을 크게 지연시킨다는 단점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하기 위한 인증서 상태 검증 서버의 시뮬레이션 모델을 DEVS (Discrete Event system Specification) 방법론을 이용하여 설계하였다. 이 모델은 인증서의 상태 검증을 요청하는 영역에 위치하여 해쉬 함수를 적용한 인증을 수행하도록 구성되었으며, 시뮬레이션 결과는 제시한 방법이 인증서 상태 검증 속도를 증대시켜 결과적으로 사용자의 응답 시간이 감소되는 것을 보여준다.

  • PDF

An Error Control for Media Multi-channel running on Machine to Machine Environment (사물 지능 통신 환경에서 미디어 다중 채널을 위한 오류 제어)

  • Ko, Eung-Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.74-77
    • /
    • 2014
  • This paper suggested an error control for multi-channel running on machine to machine environment. This system is suitable for recovering software fault for multimedia CSCW(Computer Supported Cooperative Works) based on machine to machine environment. It is necessary for the system to be protected by reactivity of media service instance instead of breaking process of session. This paper explains a performance analysis of an error recovery system of M2M based computing collaboration environment using rule-based DEVS modeling and simulation techniques.