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This paper presents a system-of-systems (SoS) approach 
to the formal modeling of a cyber-physical system (CPS) 
for simulation-based analysis. The approach is based on  
a convergence technology for modeling and simulation of 
a highly complex system in which SoS modeling 
methodology, hybrid systems modeling theory, and 
simulation interoperation technology are merged. The 
methodology maps each constituent system of a CPS to a 
disparate model of either continuous or discrete types. The 
theory employs two formalisms for modeling of the two 
model types with formal specification of interfaces 
between them. Finally, the technology adapts a simulation 
bus called DEVS BUS whose protocol synchronizes time 
and exchange messages between subsystems simulation. 
Benefits of the approach include reusability of simulation 
models and environments, and simulation-based analysis 
of subsystems of a CPS in an inter-relational manner. 
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I. Introduction 

A cyber-physical system (CPS) is an integration of physical 
subsystems together with computing and networking [1]. It can 
be seen as an intelligent real-time distributed monitoring and 
control system with multiple feedback loops. Since disparate 
physical and cyber subsystems of a CPS are in operational 
independence, a CPS is a system of systems (SoS). From the 
point of view of system taxonomy, physical subsystems can be 
either continuous or discrete dynamic systems; computation 
subsystems are discrete dynamic systems. Thus, a CPS itself is 
a hybrid dynamic system. Since a CPS is a hybrid dynamic 
SoS, the analysis of its behavior and performance with either 
formal or informal models is highly complex. Being done by 
interaction between disparate subsystem models, a simulation-
based technique may be more advantageous than formal 
methods in the analysis.  

This paper presents an SoS approach to formal modeling of 
CPSs for simulation-based analysis. The approach first maps 
each subsystem of computation or physical process in a CPS to 
an independent model, which is similar to the SoS concept. 
Then, it provides an interface between component models for 
their interaction. Thus, a set of component models in either 
continuous or discrete dynamics along with their interfaces 
constitutes a hybrid model. To be unified in a model 
representation of continuous and discrete dynamic models, we 
employ the system-theoretic view in the specifications of both 
models. More specifically, the view represents a system model 
in three sets (namely, input, output, and state) and associated 
operations (namely, state transition function/equation, and 
output function/equation). 

With the proposed modeling approach, simulation of the 
hybrid model would be done by interoperation between 
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simulators, each being associated with a disparate component 
model. Each simulator interprets formal semantics for the 
model. Interoperation between simulators can be performed via 
DEVS BUS [2], which may be implemented in a standard 
simulation middleware of HLA/RTI [3]–[5]. The main 
advantage of simulation interoperation is reusability of 
modeling and simulation (M&S) environments for continuous 
and discrete event dynamic systems. Moreover, analysis of 
CPSs in simulation interoperation would be done based on 
independent subsystems. Indices for a computation model are a 
function of the variables contained within, with variable 
parameters in the physical process model; and vice versa. We 
call such an analysis a joint analysis, because indices for the 
computation and physical process models are related to each 
other; thus, they should be analyzed in a joint manner. 

The remainder of this paper is organized as follows. The next 
section presents types of systems and modeling formalisms. 
Section III describes the simulation-based analysis of complex 
systems such as CPSs. Sections IV, V, and VI present our 
approach to the formal modeling of a CPS as an SoS and 
associated concepts of simulation interoperation using DEVS 
BUS. A case study is shown in Section VII. Finally, a 
conclusion is drawn in Section VIII.  

II. Types of Systems and Modeling Formalisms 

Systems M&S processes vary according to the types of 
systems and modeling objectives. The state of a system can be 
either continuous or discrete — a factor that can change over 
time. Table 1 shows the system-theoretic view of the input, 
state, and output of a system with continuous, discrete, and 
hybrid dynamics.  

A continuous (dynamic) system is one that is operating in 
continuous time and in which its input, state, and output 
variables are all real values. Examples of a continuous system 
(CS) include analog circuits/systems, vehicle dynamics, and 
continuous physical processes in a CPS such as variation of 
temperature.  

A discrete (dynamic) system is one that changes its state in a 
piecewise constant manner by either time-based or event-based 
time advances. Input, state, and output variables of the system 
are all discrete values. Viewing time-based advances as a 
special case of event-based advances, we classify a discrete 
system as a discrete event (dynamic) system. Examples of a 
discrete system include digital systems for time-based, 
communication networks for event-based, and CPS 
computation at the H/W level (that is, digital system) for time-
based and at the S/W level (that is, algorithm) for event-based. 
A hybrid (dynamic) system is a combination of continuous and 
discrete (dynamic) systems. A typical example of a hybrid  

Table 1. Types of systems: CS, discrete event system (DES), and 
hybrid system (HS = CS + DES). 
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CS 
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Fig. 1. Math formalisms for DES modeling [communication 
sequential process (CSP), calculus of communicating 
system (CCS), generalized semi-Markov process 
(GSMP), finite state machine (FSM), and petri net 
(PN)]. 
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system includes a CPS in which a computation subsystem is a 
DES and a physical subsystem is a CS. Of course, a physical 
subsystem of a CPS may be a DES, such as a flexible 
manufacturing process. The physical process in combination 
with the computation of intelligent decision-making, 
constitutes a CPS that can be classed as a DES.  

The representation of systems may be formal or informal. 
Informal models depend on a modeler’s views and experiences 
of systems. One of the main problems of informal modeling is 
the lack of mathematical semantics. Thus, such models should 
not be employed in the modeling of complex systems such as 
CPSs. On the other hand, formal modeling should be based on 
sound semantics, called formalisms, to specify the model’s 
behavior without incompleteness or ambiguity. 

The process of modeling formalisms in CS and DES differs 
depending on the type of system. This is due to the 
heterogeneous types of input, output, and state variables of the 
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two types of systems. Although modeling formalisms for CS 
relies on differential equations, a variety of formalisms have 
been employed in DES modeling. This is mainly because each 
formalism has its own semantics, which is convenient for 
modelers to express their domain-specific system to be 
modeled. Furthermore, such semantics are based on different 
mathematical bases. Figure 1 summaries such formalisms 
along with their mathematical bases. 

III. Simulation-Based Analysis of Complex Systems 

Analysis of complex systems, such as CPSs, should be 
performed for the whole life cycle of a system, ranging from 
the design phase to the operational/maintenance phase. The 
purpose of such analysis should be design/correctness 
verification and performance/effectiveness evaluation. In 
general, a system model for behavioral analysis and that for 
performance analysis do not have to be the same. Accordingly, 
formal models for the two may be different, as is also shown in 
Fig. 1. Note that behavioral analysis with formal models should 
be done either by formal methods or by simulation, but 
performance analysis should be done mainly by simulation. 

The main advantage of formal methods, such as the checking 
of models [18]–[19] and the proving of theorems [20]–[21], for 
behavior analysis is completeness — in the sense of the formal 
methods’ coverage of the verified state trajectories of a system 
model. However, formal methods are not practically applicable 
to a large-scale SOS such as a CPS, due to the cost in both time 
and space for a complete exploration of the state space of the 
system model. It is known that formal methods are applied to the 
correctness/design verification of hardware (in most advanced 
industries) and moderately sized software (in academia). 
Moreover, formal methods have limitations in performance 
analysis, for which simulation is the most suited. This is why the 
proposed method employs simulation-based analysis as opposed 
to formal methods. 

Simulation is a process to execute a formal model, in which 
a predefined input scenario is given and a corresponding output 
is observed. Thus, a range of input scenarios is limited to the 
coverage of state trajectories of the model under simulation. 
Simulation of a formal model requires simulation algorithms, 
or simulation engines, which may not be unique for a given 
formal model. A main function of any simulation engine is to 
interpret the semantics of a model, which is divided into three 
subfunctions — namely, execution of each component (model), 
time synchronization, and data exchange between components. 
Thus, each formal model has to have its own simulation engine 
to interpret the semantics specific to the model. 

Consider a CPS model that has a collection of component 
models in different semantics, which is very natural in CPS 

modeling. Then, CPS simulation would require a collection of 
local simulation engines, whereby each of which would have to 
interpret an associated component model. Moreover, the 
simulation needs to coordinate all of the local simulation engines, 
for which time synchronization and data exchange between 
them are necessary [22]. Alternatively, a CPS model may be 
specified by a unified set of semantics, which is applicable to all 
component models. In such a case, a simulation engine may be 
enough to interpret the semantics [23]. The latter is a single-
system M&S approach; the former is an SoS M&S approach, 
which will be discussed in the next section.  

IV. Convergence Technology for CPS M&S 

1. CPS as Hybrid SoS  

A CPS has two basic components: physical process and 
computation. Figure 2 shows various logical coupling 
structures of such components to form a CPS. A CPS 
implementation would map such structures in a physical 
network in an appropriate manner. Figure 3 shows one such 
mapping of a CPS in a network-centric SoS. Such a CPS 
interconnects CPSs and components of CPSs via networks, 
each of which is considered to be independent and disparate, 
yet they should work together to achieve a common goal [24]–
[27]. Note that computations and physical processes may be 
either centralized or distributed.  

A CPS is an HS with diverse subsystems of heterogeneous 
type [28]. Figure 4 shows the types of such subsystems. 
Formal modeling of these subsystems requires clear, well-
defined semantics that are specialized enough to represent their 
behavior. Whereas differential equations are used for CS 
modeling, various formalisms are in existence for DES 
modeling (see Fig 1). Formalisms for the modeling of an HS 
should have sound semantics to specify both CS and DES 
dynamics, and interfaces between them. 

Several efforts have been made in the field of modeling and 
simulation of HS. Basically, two approaches are possible from 
the point of view of a number of formalisms used in modeling. 
Figure 5 summarizes the concepts and features of the two 

 

 

Fig. 2. Coupling structure of C and P in CPS. 
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Fig. 3. CPS as network-centric SoS. 
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Fig. 4. CPS system types in modeling view: (a) hybrid CPS and 
(b) DES CPS. 
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approaches. The first approach employs a formalism that 
represents a mixture of continuous and discrete event dynamics 
[29]–[31]. As shown in Fig. 5(a), this approach should have a 
new tool to support modeling and simulation of HSs using the 
formalism. Examples of this particular approach with 
associated tools include MATLAB/Simulink, Ptolemy II [32], 
AnyLogic [33], and PowerDEVS [34]. One of the main 
hurdles for domain-specific simulation practitioners wishing to 
use this approach is the difficulty in understanding the 
semantics for the formalism. 

The remaining approach employs two formalisms with 
interfaces between them — one for continuous models, and the 

 

other for discrete event models (as shown in Fig. 5(b)). Unlike 
the first approach, this approach aims to explicitly separate 
different types of dynamics in different formalisms. However, a 
simulation approach may not be unique. One approach 
simulates continuous and discrete event models with 
appropriate interfaces in an environment [35]–[36]. The other 
approach simulates the two models in a set of interoperable 
environments in which each model is simulated by its own 
environment and is capable of communicating with the other 
model [37]–[38]. Note that the former reuses only models and 
that the latter reuses both models and simulation environments. 
Of course, both approaches need to define formal semantics for 
interfaces, which will be presented later. 

2. Joint Analysis of CPS Subsystems 

Constituent systems of CPSs perform disparate functions of 
their own to achieve a given CPS goal [39]–[40]. Thus, 
analysis of CPSs should be done in such a way that a 
computation system is analyzed as a function of a physical 
system, and vice versa. We call such an analysis a joint analysis 
for an SoS, as opposed to a single analysis for systems [41]. 
Figure 6 shows the differences between single analysis and 
joint analysis with a modeling and simulation process. 
Associated with single analysis is a conventional modeling and 
simulation approach in which a modeler views a complex 
system as one (Approach I in Fig. 6). In the approach, an 
analysis should be carried out either for computation or for 
physical process. 

On the other hand, joint analysis employs a set of disparate 
simulations, each of which simulates its own constituent 
system in an independent manner. Thus, an appropriate 
experimental design for simulation allows modelers to measure 
analysis indices for one subsystem model with the parameters 
of another. For example, the performance of a computation (or 
physical process) subsystem is measured by simulating a 
computation model while simulating a physical process (or 
computation) model with various parameters (Approach II in 
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Fig. 5. HS modeling approaches: (a) use of a unified formalism and (b) use of two formalisms. 

Model structure 

Discrete 
output 

Continuous 
output 

Discrete 
input 

Continuous 
input 

State transition function

Sdisc × Scont 

Output function 

Discrete 
output 

Discrete 
input 

Continuous 
input 

Continuous 
output 

DES model 

Continuous model 

IF IF 



ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al.   179 
http://dx.doi.org/10.4218/etrij.15.0114.0863 

  

Fig. 6. Analysis view of CPS: single analysis vs. joint analysis (taken from [41]). 
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Fig. 7. Proposed convergence approach to CPS M&S. 

  

 

Hybrid modeling formalism SoS modeling 

Simulation analysis 

Aggregation of 
continuous and 

discrete dynamics 
in a formalism 

One formalism for 
all component 

systems 

Single analysis with 
simulation 

Proposed approach 

Joint analysis with 
simulations 

interoperation 

Different 
formalism for 

different 
component 

system 

Separation 
of continuous 
and discrete  
model 

formalism 

 
 
Fig. 6). Joint analysis is effective when one is interested in the 
analysis of a constituent system with a function of parameters 
for another constituent system [42].  

3. Overview of Proposed Approach 

We are now ready to propose our approach to CPS modeling 
for simulation-based analysis. As described earlier, CPS 
modeling is closely related to such perspectives as SoS 
modeling, hybrid modeling formalism, and joint analysis. 
Although each of these three perspectives has been studied 
rigorously in its field, requirements for CPS modeling cannot 

be attained by one perspective alone. Taking the three 
perspectives into consideration, we propose an approach to 
CPS modeling (see Fig. 7).  

As shown in the figure, our approach in SoS modeling is to 
employ different formalisms for the modeling of disparate, 
constituent systems. Accordingly, our approach to hybrid 
modeling is explicit separation of continuous and discrete event 
models with sound interfaces. Finally, simulation of hybrid 
models is done by simulations interoperation in which 
continuous models, and that for discrete event models, are 
simulated in their own environment. The M&S approach 
allows one to perform a joint analysis of a CPS in which the 
analysis of subsystems is done inter-relationally. 

V. Formal Specification of CPS Model 

The proposed approach to the formal modeling of a CPS 
requires mathematical semantics for continuous models and 
discrete event models, as well as coupling schemes between  
them. Figure 8 shows a system-theoretic approach to the 
modeling of a system where continuous and discrete event 
dynamics are modeled in a unified view. The view is unified in 
that a model is represented by three sets (namely, input, output, 
and state) and operations on them (called state equation and 
output equation). Once a model is defined by the three sets and 
their respective associated operations, it should be refined to 
appropriately represent continuous and discrete event dynamics.  

More specifically, the types of input, output, and state sets for 
a continuous model are all given in terms of real values; those 
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for a discrete event model are all discrete (ranged) values. 
Accordingly, operations on the three sets for a continuous 
model are specified by a differential equation; those for      
a discrete event model are specified by a DEVS equation. Note 
that in Fig. 8 the state equation (2) in the DEVS equation for  
a discrete event model is a quantized form of that of the 
differential equation (1) in a continuous model. Likewise, 
output equations for the differential equation and the DEVS 
equation have the same form. Although Fig. 8 shows linear 
state/output equations for a CS, it may have nonlinear 
dynamics represented by nonlinear differential equations. 

Note that the state equation (1) of a linear differential 
equation model has the form d / d ( )Q t AQ t BX  , where  
d / d ( )Q t AQ t  represents a state transition with no input 
and d / dQ t BX represents a state transition with an external 
input. Discrete forms corresponding to d / d ( )Q t AQ t  and 
d / dQ t BX  are int ( )q q   and ext ( , )q q x  , in the 
DEVS equations, respectively. Such a correspondence is 
natural because both the differential equation and DEVS 
equation are based on system-theoretic representation in 
system modeling. Recall that Fig. 1 listed a variety of 
formalisms for modeling DES. However, only DEVS 
formalism corresponds to the differential equation model in the 
system-theoretic state transition representation. Moreover, 
DEVS formalism should be applicable to both behavior and 
performance analysis using simulation. 

DEVS formalism specifies DES in a hierarchical modular 
manner. The formalism has two classes — atomic model and 
coupled model. An atomic model represents state transition and 
output for a DES at a non-decomposable level. The DEVS 
equation shown in Fig. 8 is an equation form of an atomic 
model. A coupled model represents how models of atomic or 
coupled are coupled together to construct another model in a 
hierarchical form. The DEVS formalism itself is not the main 
topic of this paper. Details for the formalism can be found in [43]. 
 

 

Fig. 8. System-theoretic modeling of dynamic system. 
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An overall CPS model requires the specification of a coupling 
scheme that describes how one model is connected to the other. 
The scheme specifies a map from an output of a model to an 
input of another. The system coupling scheme (SCS) includes 
internal coupling (IC), external input coupling (EIC), and 
external output coupling (EOC) relations. These relations were 
adopted by DEVS coupled-model semantics, which do not 
consider the heterogeneity of input and output types. 

Figure 9 shows the semantics for the interfaces for all 
possible cases to couple between a discrete event model and a 
continuous model.  

We now present the proposed formalism for CPS modeling. 

1. Formal Specification of CPS Model 

MCPS = < X, Y, M, SCS>. 
X = Xdisc  Xcont: a set of hybrid inputs. 
Xdisc: a set of discrete event inputs. 
Xcont: a set of continuous inputs. 
Y = Ydisc  Ycont: a set of hybrid outputs. 
Ydisc: a set of discrete event outputs. 
Ycont: a set of continuous outputs. 
M = MDES  MCS  MHS: a set of all component models. 
MDES: a set of discrete event models. 
MCS: a set of continuous models. 
MHS: a set of hybrid models. 
SCS  (IC  EIC  EOC) × IF: system coupling scheme. 
IC  Mi.Y × Mj.X : internal coupling relation. 
EIC  (Xdisc×MDESi.X)  (Xcont×MCSi.X)  (X×MHSi.X): 
external input coupling relation. 
EOC  (MDESi.Y×Ydisc)  (MCSi.Y×Ycont)  (MHSi.Y×Y): 
external output coupling relation. 
IF  {fEE, fSS, fSE, fES}: data conversion interface. 

2. Formal Specification of Interface (IF) 

IF  {fEE, fSS, fSE, fES}. 
 = Xdisc  Ydisc: a set of discrete events. 
Ω: a set of time segment functions (intput and output of MCS in 
time interval). 
fEE: event to event interface. 
fSS: signal to signal interface. 
fSE: signal to event interface. 
fES: event to signal interface. 
See Fig. 9. 

3. Formal Specification of CS (MCS) 

MCS = <Xcont, Qcont, Ycont, δ cont, λ cont>. 
Xcont: a set of continuous inputs. 
Qcont: a set of continuous states. 
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Fig. 9. Formal specification of data conversion interface. 
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Ycont: a set of continuous outputs. 

δcont: 
d

dt
Qcont (t) = δcont (Qcont(t), Xcont(t), t): state transition 

function. 
λcont : Ycont = λcont(Qcont, Xcont, t): output function. 

4. Formal Specification of DEVS Atomic Model (dAM of 
MDES) [43] 

dAM = <Xdisc, Sdisc, Ydisc, δext, δint, λ, ta>. 
Xdisc: a set of discrete event inputs. 
Sdisc: a set of discrete event states. 
Ydisc: a set of discrete event outputs. 
δext: Q × Xdisc→Sdisc: external transition function. 
   Q = {(s, e) | sSdisc and 0 ≤ e ≤ ta(s)} 
δint: Q→Sdisc : internal transition function. 

λ: Q→Ydisc : output function. 

ta: Sdisc 0,R
 : time advance function. 

5. Formal Specification of DEVS Coupled Model (dCM of 
MDES) [43] 

dCM = <Xdisc, Sdisc, M, EIC, EOC, IC, SELECT>. 

Xdisc: a set of discrete event inputs. 

Ydisc: a set of discrete event outputs. 

M: a set of all component models. 

EIC  Xdisc× Mi.X: external input coupling. 

EOC  Mi.Y × Ydisc: external output coupling. 
IC  Mi.Y × Mj.X: internal coupling. 

SELECT: 2M M : tie-breaking function. 

VI. DEVS BUS for Simulation Interoperation 

As shown in Fig. 10, our approach employs the interoperation 
of simulations, each of which simulates a constituent model 
corresponding to a disparate CPS subsystem. Such 
interoperation requires data exchange and time synchronization 
between simulations. The DEVS BUS has been proposed to 
provide a common simulation infrastructure for the 
interoperation [2]. The DEVS BUS architecture, shown in Fig. 
10, consists of a time synchronization bus controller and a data 
bus controller. Table 2 presents four messages; namely, (*, t), 
(done, tN), (x, t), and (y, t) used in the DEVS BUS protocol. 

The DEVS BUS protocol underlies the simulation algorithm, 
or simulator, of DEVS models [43]. However, the protocol is 
for interoperation between heterogeneous simulators, whereas 
the algorithm is for the simulation of DEVS models. The 
protocol employs (*, t) and (done, tN) for time synchronization 
and (x, t) and (y, t) for message delivery between heterogeneous 
simulators. The time synchronization bus controller maintains 
the global simulation time of interoperation. The controller 
receives (done, tN) from simulators and generates one (*, t) at 
a time. When receiving (*, t), a simulator updates its local 
simulation time by t. Consequently, the global causality 
constraint can be easily obtained. Messages between 
simulators pass only through the data bus controller in DEVS 
 

 

Fig. 10. DEVS BUS architecture (taken from [2]). 
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Table 2. Message type for DEVS BUS protocol. 

Message Implication 

(*, t) 
Time advance grant notification for the previous requested 
schedule reservation 

(done, tN) Schedule reservation for the next (*, t) 

(x, t) Externally received input message at time t 

(y, t) Internally generated output message at time t 
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Fig. 11. Execution sequence of models in DEVS BUS. 
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BUS. A simulator that wants to send a message to another 
simulator is necessitated to send the message (y, t) to the data 
bus controller instead of to the destination simulator. Then, 
the data bus controller forwards (y, t) to the destination 
simulator as an input (x, t) by referring to the coupling 
scheme. The coupling scheme is a relation in which all pairs 
of source and destination simulators are specified. Such a 
coupling scheme is defined at the SCS of the proposed CPS 
modeling formalism. Figure 11 shows an execution sequence 
of the messages on DEVS BUS.  

VII. Case Study: Defense CPS  

1. Torpedo as CPS 

A torpedo is a self-propelled underwater weapon carrying 
high explosives in its warhead. Being launched from 
submarines, warships, or aircrafts it tracks a target with its own 
search strategy. Our case study analyzes the dynamic behavior 
of an acoustic torpedo, which is launched from a submarine  
and homes in on the emissions of a target. The torpedo is 
mainly divided into two subsystems: a controller and a 
maneuver process. The controller, as a computation of the CPS, 
takes the role of a dynamic decision-maker under some 
uncertainty and tracks targets by its own algorithm. The 
dynamics of the maneuver process, as a physical process of the 
CPS, is represented by the continuous trajectory of the torpedo, 
which is controlled by the controller. 

An objective of torpedo modeling is to analyze hybrid 
dynamics via simulation of a hybrid dynamic system model 
using the proposed approach. Figure 12 shows a simplified 
torpedo model. The controller model controls an elevation of 
the maneuver model with a feedback of a depth of the process to 

 

Fig. 12. Overall structure of torpedo CPS Model. 
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hit a target position. The maneuver model specifies the dynamic 
behavior of the torpedo over time. The model employs six state 
variables (u, v, w, p, q, r), which represent a velocity and an 
angular velocity of each of the x, y, and z axes. The state 
transition function δcont of the model is a differential equation 
based on the Newton equation and is employed with various 
parameters such as thrust force, gravity force, drag force, and so 
on [44]. The maneuver model delivers events to the controller 
model by the interface fSE when crossing a predefined target path. 
Likewise, the controller model sends a control signal to the 
interface fES to guide the torpedo to the target. A formal 
specification of the torpedo model is given in the next subsection. 

2. Model Formal Specification 

A. Formal Specification of Torpedo Model (MCPS) 

MCPS = <X, Y, M, SCS>. 
X = {W, B, L, … , XPP, …}. 
Y =  . 
M = MDESMCS. 
MDES: a controller model. 
MCS: a maneuver model. 
SCS  (IC  EIC  EOC) × IF: system coupling scheme. 
IC = {(MDES.Eup, MCS.δs), (MDES.Edown, MCS.δs), (MCS.Z, 
MDES.Eup), (MCS.Z, MDES.Edown)}. 
EIC = {(W, MCS.W), … , (XPP, MCS.XPP), … }. 

EOC =  . 

IF = {fSE, fES}. 

fSE(Z(t)) = Eup(t) if Z(t) < –15 m. 

fSE(Z(t)) = Edown(t) if Z(t) > –15 m. 

fES(Eup, t) = – δs(t). 

fES(Edown, t) = δs(t). 

B. Formal Specification of Controller Model (MDES) 

MDES = <Xdisc, Sdisc, Ydisc, δext, δint, λ, ta>. 
Xdisc = {Eup, Edown}. 
Sdisc = {WAIT, UP, DOWN}. 
Ydisc = {Eup, Edown}. 
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δext(WAIT, Eup) = UP. 
δext(WAIT, Edown) = DOWN. 
δint(UP) = δint(DOWN) = WAIT. 
λ(UP) = Eup. 
λ(DOWN) = Edown. 
ta(WAIT) = ∞. 
ta(UP) = ta(DOWN) = 0. 

C. Formal Specification of Maneuver Model (MCS) 

MCS = <Xcont, Qcont, Ycont, δcont, λcont>. 
Xcont = {RPM, δs, δr, W, B, L, … , XPP, … }. 
Qcont = (u(t), v(t), w(t), p(t), q(t), r(t)). 
      u(t): surge motion, v(t): sway motion, 
      w(t): heave motion, p(t): roll motion, 

q(t): pitch motion, r(t): yaw motion. 
Ycont = {X(t), Y(t), Z(t), ϕ(t), θ(t), ψ(t)}. 

δcont : 
d

dt
Qcont(t) = f(RPM, δs, δr, u, v, w, p, q, r, ϕ, ψ, θ). 

λcont : 
d

dt
X(t) = u(t)cos θ cos ϕ  

+ v(t)(–cos ϕ sin ψ + sin ϕ sin θ cos ψ)  
+ w(t)(sin ϕ sin ψ + cos ϕ sin θ cos ψ). 

d

dt
Y(t) = u(t)cos θ sin ϕ + v(t)(cos ϕ cos ψ + sin ϕ sin θ sin ψ)  

+w(t)(–sin ϕ sin ψ + cos ϕ sin θ sin ψ). 
d

dt
Z(t) = –u(t)sin θ + v(t)sin ϕ cos θ + w(t)cos ϕ cos θ. 

d

dt
ϕ(t) = p(t) + q(t)sin ϕ tan θ + r(t)cos ϕ tan θ. 

d

dt
θ(t) = q(t)cos ϕ – r(t)sin ϕ. 

d

dt
ψ(t) = [q(t)sin ϕ + r(t)cos ϕ]/cos θ. 

Refer to [44] for details of equations and coefficients. 

3. Behavior Analysis of Torpedo CPS Model 

The torpedo CSP model specified in the previous subsection 
is implemented and simulated. The torpedo is launched from a 
submarine and steered onto the target by controlling its position. 
When the depth of the maneuver model is located to be within 
15 meters of the surface, a “down” event occurs and the 
controller model increases the elevation angle of the maneuver 
model. In contrast, when the torpedo sinks to below 15 meters 
deep, an “up” event is activated and the controller model 
controls the depth of the maneuver model by decreasing the 
elevation angle. The computation model (MDES) and the 
physical process model (MCS) of the torpedo CPS model 
(MCPS) are implemented by DEVSim++ [45] and C++,   

    

Fig. 13. Dynamic behavior of torpedo CPS model: (a) state 
transition of computation model (MDES), (b) elevation 
angle (δs(t)) applied to physical process model (MCS), 
and (c) depth (Z(t)) of physical process model (MCS). 
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respectively. Figure 13 shows the dynamic behavior of the 
torpedo CPS model during simulation. 

VIII. Conclusion 

A CPS consists of a collection of disparate subsystems of 
heterogeneous types. Since a CPS is a highly complex hybrid 
dynamic system of systems, simulation modeling is a practical 
means to analyze the behavior or performance of a CPS. The 
proposed formal modeling approach is a convergence 
technology in which concepts of SoS, modeling formalism of 
hybrid systems, and simulations interoperation are merged. The 
approach maps each subsystem of a CPS to an independent 
simulation model of either continuous or discrete event type, 
which should be simulated in a separate environment but 
interoperated together. Benefits of the approach include 
reusability of models and simulation environments/tools and 
analysis of subsystems in a flexible and inter-relational manner. 
The proposed approach would be still applicable if a non-
DEVS formalism is used for the modeling of discrete event 
systems. In such a case, the formalism should support explicit 
input and output specifications to be compliant with the 
proposed interface specification. A simple case study shows an 
application of the proposed approach for modeling, simulation, 
and analysis of a CPS. 
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