
ETRI Journal, Volume 37, Number 1, February 2015 © 2015 Kyou Ho Lee et al. 175
http://dx.doi.org/10.4218/etrij.15.0114.0863

This paper presents a system-of-systems (SoS) approach
to the formal modeling of a cyber-physical system (CPS)
for simulation-based analysis. The approach is based on
a convergence technology for modeling and simulation of
a highly complex system in which SoS modeling
methodology, hybrid systems modeling theory, and
simulation interoperation technology are merged. The
methodology maps each constituent system of a CPS to a
disparate model of either continuous or discrete types. The
theory employs two formalisms for modeling of the two
model types with formal specification of interfaces
between them. Finally, the technology adapts a simulation
bus called DEVS BUS whose protocol synchronizes time
and exchange messages between subsystems simulation.
Benefits of the approach include reusability of simulation
models and environments, and simulation-based analysis
of subsystems of a CPS in an inter-relational manner.

Keywords: Cyber-physical system, CPS, system of
systems, hybrid system, formal model, simulation-based
analysis.

Manuscript received July 16, 2014; revised Oct. 1, 2014; accepted Nov. 21, 2014.
This work was supported by the Inje Research and Scholarship Foundation in 2011.
Kyou Ho Lee (corresponding author, kyou@inje.ac.kr) is with HSV-TRC, UHRC, and the

Department of Information and Communications Engineering, Inje University, Gimhae, Rep.
of Korea.

Jeong Hee Hong (jhhong@smslab.kaist.ac.kr) is with the Department of Industrial and
Systems Engineering, KAIST, Daejeon, Rep. of Korea.

Tag Gon Kim (tkim@ee.kaist.ac.kr) is with the Department of Electrical Engineering,
KAIST, Daejeon, Rep. of Korea.

I. Introduction

A cyber-physical system (CPS) is an integration of physical
subsystems together with computing and networking [1]. It can
be seen as an intelligent real-time distributed monitoring and
control system with multiple feedback loops. Since disparate
physical and cyber subsystems of a CPS are in operational
independence, a CPS is a system of systems (SoS). From the
point of view of system taxonomy, physical subsystems can be
either continuous or discrete dynamic systems; computation
subsystems are discrete dynamic systems. Thus, a CPS itself is
a hybrid dynamic system. Since a CPS is a hybrid dynamic
SoS, the analysis of its behavior and performance with either
formal or informal models is highly complex. Being done by
interaction between disparate subsystem models, a simulation-
based technique may be more advantageous than formal
methods in the analysis.

This paper presents an SoS approach to formal modeling of
CPSs for simulation-based analysis. The approach first maps
each subsystem of computation or physical process in a CPS to
an independent model, which is similar to the SoS concept.
Then, it provides an interface between component models for
their interaction. Thus, a set of component models in either
continuous or discrete dynamics along with their interfaces
constitutes a hybrid model. To be unified in a model
representation of continuous and discrete dynamic models, we
employ the system-theoretic view in the specifications of both
models. More specifically, the view represents a system model
in three sets (namely, input, output, and state) and associated
operations (namely, state transition function/equation, and
output function/equation).

With the proposed modeling approach, simulation of the
hybrid model would be done by interoperation between

System of Systems Approach to Formal
 Modeling of CPS for Simulation-Based Analysis

Kyou Ho Lee, Jeong Hee Hong, and Tag Gon Kim

176 Kyou Ho Lee et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0863

simulators, each being associated with a disparate component
model. Each simulator interprets formal semantics for the
model. Interoperation between simulators can be performed via
DEVS BUS [2], which may be implemented in a standard
simulation middleware of HLA/RTI [3]–[5]. The main
advantage of simulation interoperation is reusability of
modeling and simulation (M&S) environments for continuous
and discrete event dynamic systems. Moreover, analysis of
CPSs in simulation interoperation would be done based on
independent subsystems. Indices for a computation model are a
function of the variables contained within, with variable
parameters in the physical process model; and vice versa. We
call such an analysis a joint analysis, because indices for the
computation and physical process models are related to each
other; thus, they should be analyzed in a joint manner.

The remainder of this paper is organized as follows. The next
section presents types of systems and modeling formalisms.
Section III describes the simulation-based analysis of complex
systems such as CPSs. Sections IV, V, and VI present our
approach to the formal modeling of a CPS as an SoS and
associated concepts of simulation interoperation using DEVS
BUS. A case study is shown in Section VII. Finally, a
conclusion is drawn in Section VIII.

II. Types of Systems and Modeling Formalisms

Systems M&S processes vary according to the types of
systems and modeling objectives. The state of a system can be
either continuous or discrete — a factor that can change over
time. Table 1 shows the system-theoretic view of the input,
state, and output of a system with continuous, discrete, and
hybrid dynamics.

A continuous (dynamic) system is one that is operating in
continuous time and in which its input, state, and output
variables are all real values. Examples of a continuous system
(CS) include analog circuits/systems, vehicle dynamics, and
continuous physical processes in a CPS such as variation of
temperature.

A discrete (dynamic) system is one that changes its state in a
piecewise constant manner by either time-based or event-based
time advances. Input, state, and output variables of the system
are all discrete values. Viewing time-based advances as a
special case of event-based advances, we classify a discrete
system as a discrete event (dynamic) system. Examples of a
discrete system include digital systems for time-based,
communication networks for event-based, and CPS
computation at the H/W level (that is, digital system) for time-
based and at the S/W level (that is, algorithm) for event-based.
A hybrid (dynamic) system is a combination of continuous and
discrete (dynamic) systems. A typical example of a hybrid

Table 1. Types of systems: CS, discrete event system (DES), and
hybrid system (HS = CS + DES).

 Input State Output Example
Modeling
formalism

CS

Continuous
physical process
(e.g. variation of

temperature)

Differential
equation

Time-
based

Computation at
H/W level

HS

(CS+

DES)
DES

Event-
based

Computation at
S/W level

See Fig. 1

Required
information

Model type

Example

Modeling
purpose

M
athem

atical basis and form
alism

Fig. 1. Math formalisms for DES modeling [communication
sequential process (CSP), calculus of communicating
system (CCS), generalized semi-Markov process
(GSMP), finite state machine (FSM), and petri net
(PN)].

State sequence Timed state sequence

Untimed DES model Timed DES model

Safeness, liveness Throughput

Behavioral analysis
(correctness)

Performance analysis
(efficiency)

Logic

(Process)
 algebra

Set/bag
theory

Temporal logic
[6]

CSP [8]
CCS [9]

FSM [12] /
automata [13]
 PN [14]

GSMP [10]
Min-Max algebra [11]

Timed FSM /
 automata [15]

 Timed-PN [16]

DEVS formalism [17]

Timed temporal
 logic [7]

system includes a CPS in which a computation subsystem is a
DES and a physical subsystem is a CS. Of course, a physical
subsystem of a CPS may be a DES, such as a flexible
manufacturing process. The physical process in combination
with the computation of intelligent decision-making,
constitutes a CPS that can be classed as a DES.

The representation of systems may be formal or informal.
Informal models depend on a modeler’s views and experiences
of systems. One of the main problems of informal modeling is
the lack of mathematical semantics. Thus, such models should
not be employed in the modeling of complex systems such as
CPSs. On the other hand, formal modeling should be based on
sound semantics, called formalisms, to specify the model’s
behavior without incompleteness or ambiguity.

The process of modeling formalisms in CS and DES differs
depending on the type of system. This is due to the
heterogeneous types of input, output, and state variables of the

ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al. 177
http://dx.doi.org/10.4218/etrij.15.0114.0863

two types of systems. Although modeling formalisms for CS
relies on differential equations, a variety of formalisms have
been employed in DES modeling. This is mainly because each
formalism has its own semantics, which is convenient for
modelers to express their domain-specific system to be
modeled. Furthermore, such semantics are based on different
mathematical bases. Figure 1 summaries such formalisms
along with their mathematical bases.

III. Simulation-Based Analysis of Complex Systems

Analysis of complex systems, such as CPSs, should be
performed for the whole life cycle of a system, ranging from
the design phase to the operational/maintenance phase. The
purpose of such analysis should be design/correctness
verification and performance/effectiveness evaluation. In
general, a system model for behavioral analysis and that for
performance analysis do not have to be the same. Accordingly,
formal models for the two may be different, as is also shown in
Fig. 1. Note that behavioral analysis with formal models should
be done either by formal methods or by simulation, but
performance analysis should be done mainly by simulation.

The main advantage of formal methods, such as the checking
of models [18]–[19] and the proving of theorems [20]–[21], for
behavior analysis is completeness — in the sense of the formal
methods’ coverage of the verified state trajectories of a system
model. However, formal methods are not practically applicable
to a large-scale SOS such as a CPS, due to the cost in both time
and space for a complete exploration of the state space of the
system model. It is known that formal methods are applied to the
correctness/design verification of hardware (in most advanced
industries) and moderately sized software (in academia).
Moreover, formal methods have limitations in performance
analysis, for which simulation is the most suited. This is why the
proposed method employs simulation-based analysis as opposed
to formal methods.

Simulation is a process to execute a formal model, in which
a predefined input scenario is given and a corresponding output
is observed. Thus, a range of input scenarios is limited to the
coverage of state trajectories of the model under simulation.
Simulation of a formal model requires simulation algorithms,
or simulation engines, which may not be unique for a given
formal model. A main function of any simulation engine is to
interpret the semantics of a model, which is divided into three
subfunctions — namely, execution of each component (model),
time synchronization, and data exchange between components.
Thus, each formal model has to have its own simulation engine
to interpret the semantics specific to the model.

Consider a CPS model that has a collection of component
models in different semantics, which is very natural in CPS

modeling. Then, CPS simulation would require a collection of
local simulation engines, whereby each of which would have to
interpret an associated component model. Moreover, the
simulation needs to coordinate all of the local simulation engines,
for which time synchronization and data exchange between
them are necessary [22]. Alternatively, a CPS model may be
specified by a unified set of semantics, which is applicable to all
component models. In such a case, a simulation engine may be
enough to interpret the semantics [23]. The latter is a single-
system M&S approach; the former is an SoS M&S approach,
which will be discussed in the next section.

IV. Convergence Technology for CPS M&S

1. CPS as Hybrid SoS

A CPS has two basic components: physical process and
computation. Figure 2 shows various logical coupling
structures of such components to form a CPS. A CPS
implementation would map such structures in a physical
network in an appropriate manner. Figure 3 shows one such
mapping of a CPS in a network-centric SoS. Such a CPS
interconnects CPSs and components of CPSs via networks,
each of which is considered to be independent and disparate,
yet they should work together to achieve a common goal [24]–
[27]. Note that computations and physical processes may be
either centralized or distributed.

A CPS is an HS with diverse subsystems of heterogeneous
type [28]. Figure 4 shows the types of such subsystems.
Formal modeling of these subsystems requires clear, well-
defined semantics that are specialized enough to represent their
behavior. Whereas differential equations are used for CS
modeling, various formalisms are in existence for DES
modeling (see Fig 1). Formalisms for the modeling of an HS
should have sound semantics to specify both CS and DES
dynamics, and interfaces between them.

Several efforts have been made in the field of modeling and
simulation of HS. Basically, two approaches are possible from
the point of view of a number of formalisms used in modeling.
Figure 5 summarizes the concepts and features of the two

Fig. 2. Coupling structure of C and P in CPS.

C

P

C

P1 PN

1:1 1:N N:1

C1 … CN

P

C1 CM…

P1 PN…

(a) (b)

…

(c) (d)

M:N

C: computation (discrete)
P: physical process (continuous or discrete)

178 Kyou Ho Lee et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0863

Fig. 3. CPS as network-centric SoS.

Network for
component systems

System1

System3

CPS
CPS

System2

System4

System10

System11 System15 System16

System100

System110

System111

System120

CPS

CPS

CPS

C

P

C

PN P1

C1

CM

PN

P1
P1CN C1

C

P1

PN

Fig. 4. CPS system types in modeling view: (a) hybrid CPS and
(b) DES CPS.

(a) (b)

Hybrid CPS

Computation (DES)

Physical process (CS)

Computation (DES)

Physical process (DES)

DES CPS

approaches. The first approach employs a formalism that
represents a mixture of continuous and discrete event dynamics
[29]–[31]. As shown in Fig. 5(a), this approach should have a
new tool to support modeling and simulation of HSs using the
formalism. Examples of this particular approach with
associated tools include MATLAB/Simulink, Ptolemy II [32],
AnyLogic [33], and PowerDEVS [34]. One of the main
hurdles for domain-specific simulation practitioners wishing to
use this approach is the difficulty in understanding the
semantics for the formalism.

The remaining approach employs two formalisms with
interfaces between them — one for continuous models, and the

other for discrete event models (as shown in Fig. 5(b)). Unlike
the first approach, this approach aims to explicitly separate
different types of dynamics in different formalisms. However, a
simulation approach may not be unique. One approach
simulates continuous and discrete event models with
appropriate interfaces in an environment [35]–[36]. The other
approach simulates the two models in a set of interoperable
environments in which each model is simulated by its own
environment and is capable of communicating with the other
model [37]–[38]. Note that the former reuses only models and
that the latter reuses both models and simulation environments.
Of course, both approaches need to define formal semantics for
interfaces, which will be presented later.

2. Joint Analysis of CPS Subsystems

Constituent systems of CPSs perform disparate functions of
their own to achieve a given CPS goal [39]–[40]. Thus,
analysis of CPSs should be done in such a way that a
computation system is analyzed as a function of a physical
system, and vice versa. We call such an analysis a joint analysis
for an SoS, as opposed to a single analysis for systems [41].
Figure 6 shows the differences between single analysis and
joint analysis with a modeling and simulation process.
Associated with single analysis is a conventional modeling and
simulation approach in which a modeler views a complex
system as one (Approach I in Fig. 6). In the approach, an
analysis should be carried out either for computation or for
physical process.

On the other hand, joint analysis employs a set of disparate
simulations, each of which simulates its own constituent
system in an independent manner. Thus, an appropriate
experimental design for simulation allows modelers to measure
analysis indices for one subsystem model with the parameters
of another. For example, the performance of a computation (or
physical process) subsystem is measured by simulating a
computation model while simulating a physical process (or
computation) model with various parameters (Approach II in

Feature
New M&S theory Existing M&S theory and interface theory

New M&S tools required Existing M&S tools reuse

(a) (b)

Fig. 5. HS modeling approaches: (a) use of a unified formalism and (b) use of two formalisms.

Model structure

Discrete
output

Continuous
output

Discrete
input

Continuous
input

State transition function

Sdisc × Scont

Output function

Discrete
output

Discrete
input

Continuous
input

Continuous
output

DES model

Continuous model

IF IF

ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al. 179
http://dx.doi.org/10.4218/etrij.15.0114.0863

Fig. 6. Analysis view of CPS: single analysis vs. joint analysis (taken from [41]).

CPS I

CPS II

Approach I
(modeling CPS

as a whole system)

Approach II
(modeling CPS as an SoS)

Computation

PP

Single simulation

Simulation bus (eg: RTI)

Interoperation of

single simulations

Single analysis

Joint analysis

JOINT

Modeling Simulation Analysis

CPS

Execution of CPS

Simulation of
PP

Simulation of
computation

Parameters for C

Parameters for PP

Parameters for
C or PP

x y

C C C C
1 1

PP PP PP PP
1 1 1

,..., ; ,...,

,..., ; ,...,

n m

k

P P v v

P P v v

Computation

PP
xC yC

xPP yPP

… ……

1

1

,..., ;

,... ,

C C
n

C C
m

P P

v v

M&S tool 1

PP PP
1

PP PP
1 1

,..., ;

,...,

kP P

v v

M&S tool N
Pi : parameter
vi : variable
C : computation
PP: physical process

y (indices for C or PP)

yC (indices for C)

yPP (indices for PP)

PP
iv

C
iv

C/PP
iv

Fig. 7. Proposed convergence approach to CPS M&S.

Hybrid modeling formalism SoS modeling

Simulation analysis

Aggregation of
continuous and

discrete dynamics
in a formalism

One formalism for
all component

systems

Single analysis with
simulation

Proposed approach

Joint analysis with
simulations

interoperation

Different
formalism for

different
component

system

Separation
of continuous
and discrete
model

formalism

Fig. 6). Joint analysis is effective when one is interested in the
analysis of a constituent system with a function of parameters
for another constituent system [42].

3. Overview of Proposed Approach

We are now ready to propose our approach to CPS modeling
for simulation-based analysis. As described earlier, CPS
modeling is closely related to such perspectives as SoS
modeling, hybrid modeling formalism, and joint analysis.
Although each of these three perspectives has been studied
rigorously in its field, requirements for CPS modeling cannot

be attained by one perspective alone. Taking the three
perspectives into consideration, we propose an approach to
CPS modeling (see Fig. 7).

As shown in the figure, our approach in SoS modeling is to
employ different formalisms for the modeling of disparate,
constituent systems. Accordingly, our approach to hybrid
modeling is explicit separation of continuous and discrete event
models with sound interfaces. Finally, simulation of hybrid
models is done by simulations interoperation in which
continuous models, and that for discrete event models, are
simulated in their own environment. The M&S approach
allows one to perform a joint analysis of a CPS in which the
analysis of subsystems is done inter-relationally.

V. Formal Specification of CPS Model

The proposed approach to the formal modeling of a CPS
requires mathematical semantics for continuous models and
discrete event models, as well as coupling schemes between
them. Figure 8 shows a system-theoretic approach to the
modeling of a system where continuous and discrete event
dynamics are modeled in a unified view. The view is unified in
that a model is represented by three sets (namely, input, output,
and state) and operations on them (called state equation and
output equation). Once a model is defined by the three sets and
their respective associated operations, it should be refined to
appropriately represent continuous and discrete event dynamics.

More specifically, the types of input, output, and state sets for
a continuous model are all given in terms of real values; those

180 Kyou Ho Lee et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0863

for a discrete event model are all discrete (ranged) values.
Accordingly, operations on the three sets for a continuous
model are specified by a differential equation; those for
a discrete event model are specified by a DEVS equation. Note
that in Fig. 8 the state equation (2) in the DEVS equation for
a discrete event model is a quantized form of that of the
differential equation (1) in a continuous model. Likewise,
output equations for the differential equation and the DEVS
equation have the same form. Although Fig. 8 shows linear
state/output equations for a CS, it may have nonlinear
dynamics represented by nonlinear differential equations.

Note that the state equation (1) of a linear differential
equation model has the form d / d ()Q t AQ t BX  , where
d / d ()Q t AQ t represents a state transition with no input
and d / dQ t BX represents a state transition with an external
input. Discrete forms corresponding to d / d ()Q t AQ t and
d / dQ t BX are int ()q q  and ext (,)q q x  , in the
DEVS equations, respectively. Such a correspondence is
natural because both the differential equation and DEVS
equation are based on system-theoretic representation in
system modeling. Recall that Fig. 1 listed a variety of
formalisms for modeling DES. However, only DEVS
formalism corresponds to the differential equation model in the
system-theoretic state transition representation. Moreover,
DEVS formalism should be applicable to both behavior and
performance analysis using simulation.

DEVS formalism specifies DES in a hierarchical modular
manner. The formalism has two classes — atomic model and
coupled model. An atomic model represents state transition and
output for a DES at a non-decomposable level. The DEVS
equation shown in Fig. 8 is an equation form of an atomic
model. A coupled model represents how models of atomic or
coupled are coupled together to construct another model in a
hierarchical form. The DEVS formalism itself is not the main
topic of this paper. Details for the formalism can be found in [43].

Fig. 8. System-theoretic modeling of dynamic system.

 Q
X Y

System theoretic model specification

State equation Output equation

System representation
 - X: input
 - Y: output
 - Q: state

Differential equation for linear CS
 - X: real-values set
 - Y: real- values set
 - Q: real-values set

DEVS equation for DES
 - X: discrete events set
 - Y: discrete events set
 - Q: discrete events set

Y = g(Q, X)

Y = CQ + DX

y = λ(q) q=δint(q)  δext(q, x)
(2)

d
(,)

d

Q
f Q X

t


d

d

Q
AQ BX

t
 

(1)

An overall CPS model requires the specification of a coupling
scheme that describes how one model is connected to the other.
The scheme specifies a map from an output of a model to an
input of another. The system coupling scheme (SCS) includes
internal coupling (IC), external input coupling (EIC), and
external output coupling (EOC) relations. These relations were
adopted by DEVS coupled-model semantics, which do not
consider the heterogeneity of input and output types.

Figure 9 shows the semantics for the interfaces for all
possible cases to couple between a discrete event model and a
continuous model.

We now present the proposed formalism for CPS modeling.

1. Formal Specification of CPS Model

MCPS = < X, Y, M, SCS>.
X = Xdisc  Xcont: a set of hybrid inputs.
Xdisc: a set of discrete event inputs.
Xcont: a set of continuous inputs.
Y = Ydisc  Ycont: a set of hybrid outputs.
Ydisc: a set of discrete event outputs.
Ycont: a set of continuous outputs.
M = MDES  MCS  MHS: a set of all component models.
MDES: a set of discrete event models.
MCS: a set of continuous models.
MHS: a set of hybrid models.
SCS  (IC  EIC  EOC) × IF: system coupling scheme.
IC  Mi.Y × Mj.X : internal coupling relation.
EIC  (Xdisc×MDESi.X)  (Xcont×MCSi.X)  (X×MHSi.X):
external input coupling relation.
EOC  (MDESi.Y×Ydisc)  (MCSi.Y×Ycont)  (MHSi.Y×Y):
external output coupling relation.
IF  {fEE, fSS, fSE, fES}: data conversion interface.

2. Formal Specification of Interface (IF)

IF  {fEE, fSS, fSE, fES}.
 = Xdisc  Ydisc: a set of discrete events.
Ω: a set of time segment functions (intput and output of MCS in
time interval).
fEE: event to event interface.
fSS: signal to signal interface.
fSE: signal to event interface.
fES: event to signal interface.
See Fig. 9.

3. Formal Specification of CS (MCS)

MCS = <Xcont, Qcont, Ycont, δ cont, λ cont>.
Xcont: a set of continuous inputs.
Qcont: a set of continuous states.

ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al. 181
http://dx.doi.org/10.4218/etrij.15.0114.0863

Fig. 9. Formal specification of data conversion interface.

IF Interface semantics Action function

iDESM



t

fEE iDESM



t
e1

e2

t1 t1 EEf T T    

Event to event
EE 1 1 2 1(,) ()f e t e t 

iCSM fSS
iCSM

Ω Ω

t t
SSf T T  

Signal to signal
SS (()) ()f w t w t 

Ω

t t
t3

e3 

iCSM fSE
SEf T T

T

  



Signal to event

SE 1 3

3 3

((,))

()

f w t t

e t





(Refer to predefined
detection rules, e.g.

zero-crossing)

iDESM fES
jCSM

 Ω
e1

t1 t1 t2

w(t1, t2)

t ESf T

T T

  

 

Event to signal

ES 1 1 1 2(,) (,)f e t w t t

iDESM

t

t1

Ycont: a set of continuous outputs.

δcont:
d

dt
Qcont (t) = δcont (Qcont(t), Xcont(t), t): state transition

function.
λcont : Ycont = λcont(Qcont, Xcont, t): output function.

4. Formal Specification of DEVS Atomic Model (dAM of
MDES) [43]

dAM = <Xdisc, Sdisc, Ydisc, δext, δint, λ, ta>.
Xdisc: a set of discrete event inputs.
Sdisc: a set of discrete event states.
Ydisc: a set of discrete event outputs.
δext: Q × Xdisc→Sdisc: external transition function.
 Q = {(s, e) | sSdisc and 0 ≤ e ≤ ta(s)}
δint: Q→Sdisc : internal transition function.

λ: Q→Ydisc : output function.

ta: Sdisc 0,R
 : time advance function.

5. Formal Specification of DEVS Coupled Model (dCM of
MDES) [43]

dCM = <Xdisc, Sdisc, M, EIC, EOC, IC, SELECT>.

Xdisc: a set of discrete event inputs.

Ydisc: a set of discrete event outputs.

M: a set of all component models.

EIC  Xdisc× Mi.X: external input coupling.

EOC  Mi.Y × Ydisc: external output coupling.
IC  Mi.Y × Mj.X: internal coupling.

SELECT: 2M M : tie-breaking function.

VI. DEVS BUS for Simulation Interoperation

As shown in Fig. 10, our approach employs the interoperation
of simulations, each of which simulates a constituent model
corresponding to a disparate CPS subsystem. Such
interoperation requires data exchange and time synchronization
between simulations. The DEVS BUS has been proposed to
provide a common simulation infrastructure for the
interoperation [2]. The DEVS BUS architecture, shown in Fig.
10, consists of a time synchronization bus controller and a data
bus controller. Table 2 presents four messages; namely, (*, t),
(done, tN), (x, t), and (y, t) used in the DEVS BUS protocol.

The DEVS BUS protocol underlies the simulation algorithm,
or simulator, of DEVS models [43]. However, the protocol is
for interoperation between heterogeneous simulators, whereas
the algorithm is for the simulation of DEVS models. The
protocol employs (*, t) and (done, tN) for time synchronization
and (x, t) and (y, t) for message delivery between heterogeneous
simulators. The time synchronization bus controller maintains
the global simulation time of interoperation. The controller
receives (done, tN) from simulators and generates one (*, t) at
a time. When receiving (*, t), a simulator updates its local
simulation time by t. Consequently, the global causality
constraint can be easily obtained. Messages between
simulators pass only through the data bus controller in DEVS

Fig. 10. DEVS BUS architecture (taken from [2]).

(x, t), (y, t)

(*, t)
(done, tN)

Data bus

Time sync bus

DEVS BUS

Model100 Model110 Model111 Model120

C

P

C

P1 PN

Model1 Model2

…

C1 CM P1 PN … …
SCS

Table 2. Message type for DEVS BUS protocol.

Message Implication

(*, t)
Time advance grant notification for the previous requested
schedule reservation

(done, tN) Schedule reservation for the next (*, t)

(x, t) Externally received input message at time t

(y, t) Internally generated output message at time t

182 Kyou Ho Lee et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0863

Fig. 11. Execution sequence of models in DEVS BUS.

 Data bus

DEVS BUS

(done, 3) (done, 5)

(*, 3)

(y, 3)

SCS

(x, 3)

(done, 4)

(*, 4)

(y, 4)

(done, 10)

(done, 15)

(x, 4)

Time sync
bus

Find destination from SCS
translate (y, 3) to (x, 3) by fES

Find destination from SCS
translate (y, 4) to (x, 4) by fSE

MDES MCS

BUS. A simulator that wants to send a message to another
simulator is necessitated to send the message (y, t) to the data
bus controller instead of to the destination simulator. Then,
the data bus controller forwards (y, t) to the destination
simulator as an input (x, t) by referring to the coupling
scheme. The coupling scheme is a relation in which all pairs
of source and destination simulators are specified. Such a
coupling scheme is defined at the SCS of the proposed CPS
modeling formalism. Figure 11 shows an execution sequence
of the messages on DEVS BUS.

VII. Case Study: Defense CPS

1. Torpedo as CPS

A torpedo is a self-propelled underwater weapon carrying
high explosives in its warhead. Being launched from
submarines, warships, or aircrafts it tracks a target with its own
search strategy. Our case study analyzes the dynamic behavior
of an acoustic torpedo, which is launched from a submarine
and homes in on the emissions of a target. The torpedo is
mainly divided into two subsystems: a controller and a
maneuver process. The controller, as a computation of the CPS,
takes the role of a dynamic decision-maker under some
uncertainty and tracks targets by its own algorithm. The
dynamics of the maneuver process, as a physical process of the
CPS, is represented by the continuous trajectory of the torpedo,
which is controlled by the controller.

An objective of torpedo modeling is to analyze hybrid
dynamics via simulation of a hybrid dynamic system model
using the proposed approach. Figure 12 shows a simplified
torpedo model. The controller model controls an elevation of
the maneuver model with a feedback of a depth of the process to

Fig. 12. Overall structure of torpedo CPS Model.

Controller
(computation: MDES)

IF

Maneuver
(Physical process: MCS)

W
B
L…

…

…

…

X'PP

Torpedo (MCPS)

fES fSE

hit a target position. The maneuver model specifies the dynamic
behavior of the torpedo over time. The model employs six state
variables (u, v, w, p, q, r), which represent a velocity and an
angular velocity of each of the x, y, and z axes. The state
transition function δcont of the model is a differential equation
based on the Newton equation and is employed with various
parameters such as thrust force, gravity force, drag force, and so
on [44]. The maneuver model delivers events to the controller
model by the interface fSE when crossing a predefined target path.
Likewise, the controller model sends a control signal to the
interface fES to guide the torpedo to the target. A formal
specification of the torpedo model is given in the next subsection.

2. Model Formal Specification

A. Formal Specification of Torpedo Model (MCPS)

MCPS = <X, Y, M, SCS>.
X = {W, B, L, … , XPP, …}.
Y =  .
M = MDESMCS.
MDES: a controller model.
MCS: a maneuver model.
SCS  (IC  EIC  EOC) × IF: system coupling scheme.
IC = {(MDES.Eup, MCS.δs), (MDES.Edown, MCS.δs), (MCS.Z,
MDES.Eup), (MCS.Z, MDES.Edown)}.
EIC = {(W, MCS.W), … , (XPP, MCS.XPP), … }.

EOC =  .

IF = {fSE, fES}.

fSE(Z(t)) = Eup(t) if Z(t) < –15 m.

fSE(Z(t)) = Edown(t) if Z(t) > –15 m.

fES(Eup, t) = – δs(t).

fES(Edown, t) = δs(t).

B. Formal Specification of Controller Model (MDES)

MDES = <Xdisc, Sdisc, Ydisc, δext, δint, λ, ta>.
Xdisc = {Eup, Edown}.
Sdisc = {WAIT, UP, DOWN}.
Ydisc = {Eup, Edown}.

ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al. 183
http://dx.doi.org/10.4218/etrij.15.0114.0863

δext(WAIT, Eup) = UP.
δext(WAIT, Edown) = DOWN.
δint(UP) = δint(DOWN) = WAIT.
λ(UP) = Eup.
λ(DOWN) = Edown.
ta(WAIT) = ∞.
ta(UP) = ta(DOWN) = 0.

C. Formal Specification of Maneuver Model (MCS)

MCS = <Xcont, Qcont, Ycont, δcont, λcont>.
Xcont = {RPM, δs, δr, W, B, L, … , XPP, … }.
Qcont = (u(t), v(t), w(t), p(t), q(t), r(t)).
 u(t): surge motion, v(t): sway motion,
 w(t): heave motion, p(t): roll motion,

q(t): pitch motion, r(t): yaw motion.
Ycont = {X(t), Y(t), Z(t), ϕ(t), θ(t), ψ(t)}.

δcont :
d

dt
Qcont(t) = f(RPM, δs, δr, u, v, w, p, q, r, ϕ, ψ, θ).

λcont :
d

dt
X(t) = u(t)cos θ cos ϕ

+ v(t)(–cos ϕ sin ψ + sin ϕ sin θ cos ψ)
+ w(t)(sin ϕ sin ψ + cos ϕ sin θ cos ψ).

d

dt
Y(t) = u(t)cos θ sin ϕ + v(t)(cos ϕ cos ψ + sin ϕ sin θ sin ψ)

+w(t)(–sin ϕ sin ψ + cos ϕ sin θ sin ψ).
d

dt
Z(t) = –u(t)sin θ + v(t)sin ϕ cos θ + w(t)cos ϕ cos θ.

d

dt
ϕ(t) = p(t) + q(t)sin ϕ tan θ + r(t)cos ϕ tan θ.

d

dt
θ(t) = q(t)cos ϕ – r(t)sin ϕ.

d

dt
ψ(t) = [q(t)sin ϕ + r(t)cos ϕ]/cos θ.

Refer to [44] for details of equations and coefficients.

3. Behavior Analysis of Torpedo CPS Model

The torpedo CSP model specified in the previous subsection
is implemented and simulated. The torpedo is launched from a
submarine and steered onto the target by controlling its position.
When the depth of the maneuver model is located to be within
15 meters of the surface, a “down” event occurs and the
controller model increases the elevation angle of the maneuver
model. In contrast, when the torpedo sinks to below 15 meters
deep, an “up” event is activated and the controller model
controls the depth of the maneuver model by decreasing the
elevation angle. The computation model (MDES) and the
physical process model (MCS) of the torpedo CPS model
(MCPS) are implemented by DEVSim++ [45] and C++,

Fig. 13. Dynamic behavior of torpedo CPS model: (a) state
transition of computation model (MDES), (b) elevation
angle (δs(t)) applied to physical process model (MCS),
and (c) depth (Z(t)) of physical process model (MCS).

0

1

0 20 40 60 80 100 120 140

Q(t)

(a)

–0.2

–0.1

0

0.1

0.2

0 20 40 60 80 100 120 140

δs(t)

(b)

–215

–165

–115

–65

–15

0 20 40 60 80 100 120 140Z(t)

(c)

t

t

t

respectively. Figure 13 shows the dynamic behavior of the
torpedo CPS model during simulation.

VIII. Conclusion

A CPS consists of a collection of disparate subsystems of
heterogeneous types. Since a CPS is a highly complex hybrid
dynamic system of systems, simulation modeling is a practical
means to analyze the behavior or performance of a CPS. The
proposed formal modeling approach is a convergence
technology in which concepts of SoS, modeling formalism of
hybrid systems, and simulations interoperation are merged. The
approach maps each subsystem of a CPS to an independent
simulation model of either continuous or discrete event type,
which should be simulated in a separate environment but
interoperated together. Benefits of the approach include
reusability of models and simulation environments/tools and
analysis of subsystems in a flexible and inter-relational manner.
The proposed approach would be still applicable if a non-
DEVS formalism is used for the modeling of discrete event
systems. In such a case, the formalism should support explicit
input and output specifications to be compliant with the
proposed interface specification. A simple case study shows an
application of the proposed approach for modeling, simulation,
and analysis of a CPS.

References

[1] E.A. Lee, “Cyber Physical Systems: Design Challenges,” IEEE

184 Kyou Ho Lee et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0863

Int. Symp., Object Oriented Real-Time Distrib. Comput., Orlando,

FL, USA, May 5–7, 2008, pp. 363–369.

[2] Y.J. Kim, J.H. Kim, and T.G. Kim, “Heterogeneous Simulation

Framework Using DEVS BUS,” SIMULATION : Trans. Soc.

Modeling Simulation Int., vol. 79, no. 1, Jan. 2003, pp. 3–18.

[3] IEEE Std. 1516-2000, IEEE Standard for Modeling and

Simulation (M&S) High Level Archit. (HLA) - Framework and

Rules, IEEE, New York, NY, USA, ISBN: 0-7381-2619-5, 2001.

[4] IEEE Std. 1516-2000, IEEE Standard for Modeling and

Simulation (M&S) High Level Archit. (HLA) - Federate Interface

Specification, IEEE, New York, NY, USA, ISBN: 0-7381-2621-7,

2001.

[5] IEEE Std. 1516-2000, IEEE Standard for Modeling and

Simulation (M&S) High Level Archit. (HLA) - Object Model

Template (OMT) Specification, IEEE, New York, NY, USA,

ISBN: 0-7381-2623-3, 2001.

[6] Z. Manna and A. Pnueli, “The Temporal Logic of Reactive and

Concurrent Systems,” New York, NY, USA: Springer-Verlag

New York, 1992.

[7] R. Koymans, “Specifying Real-Time Properties with Metric

Temporal Logic,” Real-Time Syst., vol. 2, no. 4, Nov. 1990, pp.

255–299.

[8] C.A.R. Hoare, “Communicating Sequential Processes,” Upper

Saddle River, NJ, USA: Prentice Hall, 1985.

[9] R. Milner, “Communication and Concurrency,” Upper Saddle

River, Nj, USA: Prentice Hall, 1989.

[10] P.W. Glynn, “A GSMP Formalism for Discrete Event

Systems,” Proc. IEEE, vol. 77, no. 1, Jan. 1989, pp. 14–23.

[11] R. Cuninghame-Green, “Minimax Algebra, Lecture Notes in

Economics and Mathematical Systems 166,” New York, NY,

USA: Springer-Verlag New York, 1979.

[12] A. Gill, “Introduction to the Theory of Finite-State Machines,”

New York, NY, USA: Mc-Graw Hill, 1962.

[13] Z. Kohavi, “Switching and Finite Automata Theory,” 2nd ed.,

New York, NY, USA: McGraw-Hill, 1978.

[14] J.L. Peterson, “Petri Net Theory and the Modeling of Systems,”

Upper Saddle River, NJ, USA: Prentice Hall, June 1981.

[15] G. Noubir, D.R. Stephens, and P. Raja, “Specification of Timed

Finite State Machine in Z for Distributed Real-Time Systems,”

Proc. IEEE Workshop Future Trends Distrib. Comput. Syst.,

Lisbon, Portugal, Sept. 22–24, 1993, pp. 319–325.

[16] M.A. Holliday and M.K. Vernon, “A Generalized Timed Petri

Net Model for Performance Analysis,” IEEE Trans. Softw. Eng.,

vol. 13, no. 12, 1987, pp. 1297–1310.

[17] A.I. Concepcion and B.F. Zeigler, “DEVS Formalism: A

Framework for Hierarchical Model Development,” IEEE Trans.

Softw. Eng., vol. 14, no. 2, 1988, pp. 228–241.

[18] E.M. Clarke, O. Grumberg, and D.A. Peled, “Model Checking,”

Cambridge, MA, USA: MIT Press, 1999.

[19] S. Owre et al., “PVS: Combining Specification, Proof Checking,

and Model Checking,” Comput.-Aided Verification, 1996, pp.

411–414.

[20] K. Havelund and N. Shankar, “Experiments in Theorem Proving

and Model Checking for Protocol Verification,” in FME: Ind.

Benefit Adv. Formal Methods, Berlin, Germany: Springer Berlin

Heidelberg, 1996, pp. 662–681.

[21] J. Rushby, “Theorem Proving for Verification,” in Modeling and

Verification of Parallel Processes, Berlin, Germany: Springer

Berlin Heidelberg, 2001, pp. 39–57.

[22] J.-Y. Kim et al., “Abstracted CPS Model: A Model for

Interworking between Physical System and Simulator for CPS

Simulation (WIP),” Proc. Symp. Theory Modeling Simulation -

DEVS Integr. M&S Symp., SCS/ACM, Orlando, FL, USA, Mar.

26–29, 2012.

[23] D. Henriksson and H. Elmqvist, “Cyber-Physical Systems

Modeling and Simulation with Modelica,” Proc. Int. Modelica

Conf., Dresden, Germany, Mar. 2011, pp. 502–509.

[24] M. Jamshidi, “System of Systems Engineering - New Challenges

for the 21st Century,” IEEE Aerosp. Electron. Syst. Mag., vol. 23,

no. 5, May 2008, pp. 4–19.

[25] J.E. Campbell et al., System of Systems Modeling and Analysis,

SAND REPORT SAND2005-0020, Sandia National

Laboratories, Jan. 2005.

[26] S.M. White, “Modeling a System of Systems to Analyze

Requirements,” Annual IEEE Int. Syst. Conf., Vancouver, Canada,

Mar. 23–26, 2009, pp. 83–89.

[27] P. Boily and N. Harrison, “A Simulation System of Systems to

Assess Military Aircraft Protection,” IEEE Int. Syst. Conf.,

Vancouver, Canada, Mar. 19–22, 2012, pp. 1–6.

[28] B. Wang and J.S. Baras, “HybridSim: A Modeling and Co-

simulation Toolchain for Cyber-Physical Systems,” Proc.

IEEE/ACM Int. Symp. Distrib. Simulation Real Time Appl., Delft,

Netherlands, Oct. 30–Nov. 1, 2013, pp. 33–40.

[29] P.J. Antsaklis and X.D. Koutsoukos, “Hybrid Systems: Review

and Recent Progress,” in Softw.-Enabled Contr.: Inform. Technol.

Dynamical Syst., Hoboken, NJ, USA: John Wiley & Sons, Inc.,

2003, pp. 273–298.

[30] R. Goebel, R.G. Sanfelice, and A.R. Teel, “Hybrid Dynamical

Systems,” IEEE Contr. Syst., vol. 29, no. 2, Apr. 2009, pp. 28–93.

[31] K.H. Johansson, J. Lygeros, and S. Sastry, “Modeling of Hybrid

Systems,” Contr. Syst., Robot. Autom., vol. 15, UNESCO

Encyclopedia of Life Support Systems (EOLSS).

[32] H. Zheng, “Operational Semantics of Hybrid System,” Ph.D.

dissertation, Department of EECS, University of California,

Berkeley, CA, USA, 2007.

[33] A. Borshchev, Y. Karpov, and V. Kharitonov, “Distributed

Simulation of Hybrid Systems with AnyLogic and HLA,” Future

Generation Comput. Syst., vol. 18, no. 6, May 2002, pp. 829–839.

[34] E. Kofman, M. Lapadula, and E. Pagliero, “PowerDEVS: A

DEVS-Based Environment for Hybrid System Modeling and

ETRI Journal, Volume 37, Number 1, February 2015 Kyou Ho Lee et al. 185
http://dx.doi.org/10.4218/etrij.15.0114.0863

Simulation,” School of Electronic Engineering, Universidad

Nacional de Rosario, Tech. Rep. LSD0306, 2003.

[35] F. Bouchhima et al., “Generic Discrete-Continuous Simulation

Model for Accurate Validation in Heterogeneous Systems

Design,” Microelectron. J., vol. 38, no. 6–7, 2007, pp. 805–815.

[36] M. Wetter and P. Haves, “A Modular Building Controls Virtual

Test Bed for the Integration of Heterogeneous Systems,” in

SimBuild National Conf. IBPSA-USA, Berkeley, CA, USA, July

2008, pp. 69–76.

[37] C. Sung and T.G. Kim, “Framework for Simulation of Hybrid

Systems: Interoperation of Discrete Event and Continuous

Simulators Using HLA/RTI,” IEEE Workshop Principles Adv.

Distrib. Simulation, Nice, France, June 14–17, 2011, pp. 1–8.

[38] S.J. Kwon et al., “Integrated Hybrid Systems Modeling and

Simulation Methodology Based on HDEVS Formalism,” Proc.

Summer Comput. Simulation Conf., Toronto, Canada, July 2013,

pp. 410–417.

[39] M.W. Maier, “Architecting Principles for System of Systems,”

Syst. Eng., vol. 1, no. 4, 1998, pp. 267–284.

[40] T.G. Kim, “Simulations Interoperation Approach for Modeling

and Simulation of Defense System as System of Systems,”

SpringSim, TMS Symp., Plenary Talk, San Diego, CA, USA, Apr.

7–10, 2013.

[41] T.G. Kim and D.S. Kim, “Joint Analysis of Combat Power and

Communication System via Interoperation of War Game

Simulator with Communication Network Simulator,” presented

at the ROK-US Defense Anal. Seminar, Seoul, Rep. of Korea, Apr.

23–25, 2012.

[42] J.H. Kim, I.-C. Moon, and T.G. Kim, “New Insight into Doctrine

via Simulation Interoperation of Heterogeneous Levels of Models

in Battle Experimentation,” SIMULATION : Trans. Soc.

Modeling Simulation Int., vol. 88, no. 6, June 2012, pp. 649–667.

[43] B.P. Zeigler, T.G. Kim, and H. Praehofer, “Theory of Modeling

and Simulation,” Orlando, FL, USA: Academic, 2000.

[44] T.I. Fossen, “Guidance and Control of Ocean Vehicles,” New

York, NY, USA: Wiley, 1994.

[45] T.G. Kim et al., “DEVSim++ Toolset for Defense Modeling and

Simulation and Interoperation,” J. Defense Modeling Simulation:

Appl., Methodology, Technol., vol. 8, no. 3, 2011, pp. 129–142.

Kyou Ho Lee received his BS and MS degrees

in electronics engineering from Kyungpook

National University, Daegu, Rep. of Korea, in

1980 and 1982, respectively and his PhD degree

in information and computer engineering from

the University of Gent, Belgium, in 1998. From

1983 to 2005, he was a team leader and

principal member of the research staff at ETRI, Daejeon, Rep. of

Korea. He also worked as a researcher with AIT Inc., San Jose, CA,

USA, from 1986 to 1988 and was a visiting scholar at the Department

of Computer Science and Systems, University of Washington, Tacoma,

USA, from 2011 to 2012. Since 2005, he joined Inje University,

Gimhae, Rep. of Korea, as a full professor with the Department of

Information and Communications Engineering. He is also a member of

the High Safety Vehicle Core Technology Research Center and

Ubiquitous Healthcare Research Center. His current research interests

include cyber physical systems, variable structure systems, digital

embedded systems, and ubiquitous and healthcare systems.

Jeong Hee Hong received her BS degree in

electrical engineering from Pusan National

University, Busan, Rep. of Korea, in 2005. She

received her MS and PhD degrees in electrical

engineering from KAIST, Daejeon, Rep. of

Korea, in 2007 and 2013, respectively. She is

currently a post-doctoral researcher with the

Department of Industrial and Systems Engineering, KAIST. Her

theoretic research focuses on systems engineering. In particular, she is

interested in discrete event systems modeling and simulation;

simulation-based optimization; and distributed systems development.

Her practical research includes high-level architecture and large-scale

system simulation, such as defense systems.

Tag Gon Kim received his PhD degree in

computer engineering with specialization in

systems M&S from the University of Arizona,

Tucson, USA, in 1988. He was an assistant

professor in electrical and computer engineering

at the University of Kansas, Lawrence, USA,

from 1989 to 1991. He joined the Department

of Electrical Engineering, KAIST, Daejeon, Rep. of Korea, in the

autumn of 1991 and has been a full professor with the EECS

department since 1998. He was the president of the Korea Society for

Simulation. He was the editor-in-chief for Simulation: Transactions for

the Society for Computer Modeling and Simulation International. He is

a co-author of the book Theory of Modeling and Simulation,

Academic Press, 2000; the author of the edited book Artificial

Intelligence and Simulation, Springer, 2004; and a co-author of the

book Modeling and Simulating Command and Control, Springer, 2013.

He has published about 200 papers in M&S theory and practice in

international journals and conference proceedings. He is very active in

defense M&S in the Rep. of Korea. He was, and still is, a consultant for

defense M&S technology at various Korean government organizations,

including the Ministry of Defense; Defense Agency for Technology

and Quality; Korea Institute for Defense Analysis; and Agency for

Defense Development. He is a fellow of the SCS and a senior member

of the IEEE.

