International Journal of KIMICS, Vol. 6, No. 1, March 2008

59

DEVSIF Composer: A Synthesis Tool
for Fast Interpretation of Simulation Models

Abstract—

The methods or algorithms which can
accelerate simulation speed became of great importance,
as the modeling and simulation methodology for
discrete event systems is used in many areas such as
model  validation/verification and  performance
evaluation. This paper proposes a tool named, DEVSIF
composer. The tool 1s made of an automated compiled
simulation technology and it builds a new composed
model which can be executed much fast by composing
the component models together. Models are described
by our new specification language DEVSIF, which is
compatible with object-oriented language and supports
representation of a hierarchical model structure.
Experimental results demonstrates that DEVSIF
composer enhances the simulation speed of a
transformed DEVS model 5 times faster than that of the
original ones in average.

Index Terms— Simulation speedup, DEVS, composition,
performance evaluation

I. INTRODUCTION

Systems design is an iterative process which involves
modeling, simulation and analysis of candidate systems.
If sub-systems and algorithms within larger systems are
to be developed a discrete event modeling and simulation
method can be employed[1].

Once a discrete event model for such a sub-system or
an algorithm is developed a logical/behavior analysis as
well as a performance evaluation of the model is
performed before implementation. Thus, the design
process transits among three phases, namely logical
analysis, performance evaluation and implementation
each of which often employs a different model.

If transitioning between such different models is
performed manually, it would be a major hurdle to a
seamless design process. A unified modeling framework
which provides a basis to specify models at different
phases in common semantics would overcome such a
hurdle.

This paper describes a tool named DEVSIF composer
which was implemented to accelerate the simulation
speedup in performance evaluation of systems using

Manuscript received February 17, 2008.

Wan-Bok Lee 1s with the Department of Game Design,
Kongju National University, Kongju, Chungnam, 314-
712, Korea (Tel: +82-41-850-6098, Fax: +82-41-850-
6150, Email: wblee@kongju.ac.kr)

DEVS models. The method 1s viewed as a compiled
simulation technique[2] that eliminates run-time
interpretation of communication paths among component
models[3]. The elimination has been done by a behavior-
preserved transformation method, called model
composition, which 1s based on the closed under
coupling property in DEVS theory.

First of all, to make a process as a tool we should
formalize the task and the process in a mathematical
form. Thus, a modeling language named DEVSIF need
to be defined first. Whenever we specify a simulation
model using the DEVSIF language, a newly composed
model can be built. It 1s our main contribution that we
implemented a composition tool, named DEVSIF
composer, which can automatically compose several
component models as a single atomic model just within a
second. The composed model reveals no massage
passing activities at all, and it can be executed several
times faster.

The rest of the paper is organized as follows. In
Section 2, our modeling specification, DEVSIF will be
explained. Section 3 describes the simulation mechanism
and the execution overheads in brief. The proposed tool
for simulation speedup 1s described in Section 4. After
evaluating the experimental results in Section 5, Section
6 reveals the concluding remark.

II. DEVSIF SPECIFICATION

The DEVS formalism, which 1s a set-theoretic
formalism, specifies discrete event models in a
hierarchical and modular form. Within the formalism,
one must specify 1) the basic models from which larger
ones are built, and 2) the way in which these models are
connected together in a hierarchical fashion. A basic
model, called an atomic model, has specifications for the
dynamics of the model. Detailed description about
DEVS formalism is found in [4].

DEVSIF 1s a modeling language which can represent
models of discrete event systems in a formal way[5]. The
formal expression makes it easy to analyze, simulate and
execute the model [5]. It 1s an extension of DEVS spec
language [6]. which is devised for the behavioral
analysis of the model with no timing information. A
similar specification language, called openDEVS, was
defined in [7] which has three characteristics:
preservation of the DEVS models information, object-
oriented modeling, and model type-check. The DEVSIF
specification includes all these features.



60 Wan-Bok Lee : DEVSIF Composer: A Synthesis Tool for Fast Interpretation of Simulation Models

If models are developed in DEVSIF, modelers can
have several advantages. The most advantageous is that a
model developed in DEVSIF can be utilized in the code
generation phase to generate various simulation models
depending on the target simulation environment such as
DEVSim++{8][9] or DEVSim-Java environment. It is
another merit that the designed model can be
automatically composed by the help of a tool, DEVSIF
composer. Both the composed model and the original
one reveal the same behavior while the simulation run-
tume of the composed one is less than the other.

A. DEVSIF System Development Framework

Fig. 1 shows our DEVSIF-based modeling and
simulation flow. The first step is system modeling
phase. A modeler can specify a system in a DEVSIF
specification. Then, the developed model needs to be
verified or validated. Simulation may be used in this
step. But this step need not employ a long time of
simulation rather than it is only sufficient to check
whether the model is correctly built. Usually simulation
takes much computation time and power. If simulation
speed 1s a critical problem or a fast execution is
desirable, then the model can be composed at the next
step. Code generator in DEVSIF frame-work can
generate directly the executable code from a pre-
developed DESIF specification. Finally, we can
perform a massive simulation and get various
experimental results.

_System Modeting

!

Model Verification/Validation
(simutation)

Simulation speedup
required ?

v

Code generation

v

Performance evalution &
Data collection
{massive simulation)

v

Result Analysis

Modeling Tool

Simulation Enviromment

Model composition

for speedup Composition Tool

Code Generator

Stmulgtion Envirorment

Analysis Tool

Fig. 1 DEVSIF system development framework.

B. DEVSIF Representation

DEVSIF has three parts to describe a simulation
model, which are interface, atomic model, and coupled
model. Interface part specifies a set of input/output
events that is common to an atomic model and a coupled
model. A DEVSIF model pre-serves model information
in the DEVS formalism and supports object-oriented
feature. The general DEVSIF of atomic or coupled
models are as follows:

interface model_name [: parent_model]
inputs : {[input_event]*}
outputs : { [output_event]*}

end model_name:

atomic model model_name [: parent_model]
state variables : [var_name : type_def:]*
member : [member_function]*
initial condition : [expr]*:
internal transition - [{expr) => {expr}: ]+
external transition : [{expr) > input_event => {[expr:]1+};]1*
output function : [{expr) => output_event:]*
time advance : [{expr) => expr:]*

end model_name:

interface model_name [: parent_model]
inputs : {[input_event]*}
outputs : {[output_event]*}
end model_name;:
coupled model model_name [: parent_modei]
component : {{child_name : model_name]+}
external input coupling :
{[model_name.input_event—>child_name.input_svent:]x}
external output coupling :
{[child_name.output_event->model_name. output_event:]*}
internal coupling :
{[src_child_name.output_event->dest_child_name.input_event:]*}
[select : [{[child_name:]*}]]
end model_name:

Fig. 2 DEVSIF specification.

Both the atomic and the coupled DEVSIF specify their
interface description and behavioral specification
separately. The nput event set and the output event set
are defined in the interface area.

The behavioral specification for atomic DEVSIF
consists of seven attributes. The four characteristic
functions in an atomic model of DEVS are mapped in a
one-to-one manner to those specifications in DEVSIF
such as internal transition, external transition, output
function and time advance. And the initial condition
defines the initial state of each state variable. The
member section enables us to specify quite complex form
of functions in a modular manner. Local functions in
member section are similar with the private member
function in object-oriented language. Without the
member specification, some of the transition rules might
be described in a quite long length.

The coupled DEVSIF specifies 5 attributes: components,
external input coupling, external output coupling, internal
coupling, and select. Each of the attributes has the same
semantics as that of the corresponding items in a coupled
DEVS specification. But, as the semantics of select
function has not been concretely specified i the
formalism, we concretized its meaning as priority order.
The first item in the list select of a DEVSIF has the
highest priority while the last one has the lowest priority.
If select is not specified in the DEVSIF specification,
priority order i1s the same as the sequence of their
appearance in a component section.

Furthermore, some other useful features are also
provided in DEVSIF. The DEVSIF can be linked with
other object codes. Thus some of the routines can be
developed in C or C++ language. And they can be linked
together to form an overall model. It is another
advantageous feature of DEVSIF that one DEVSIF
specification can include the other DEVSIF by using the
keyword ‘include’. Consequently, a large and complex
system can be divided into several sub systems and may
be modeled as separate DEVSIF files. But they can



international Journal of KIMICS, Vol. 6, No. 1, March 2008

61

constitute an overall system including the pre-developed
models.

C. Example

Example DEVSIF specifications for the atomic model
BUF and for the coupled model SSQ is described in Fig.
2. The detailed behavior of the model is found at [3].

interface Buff
inputs: { in. ready?}
outputs: { out}
end Buff:
atomic model Buff
state variables:
proc_status : {IDLE, BUSY};
a_length : integer:
initial condition:
proc_status 1= IDLE;
q_length = O
internal transition:
({a_length>0)&&(proc_status==IDLE)) => {
) a_length:=g_length—1:proc_status:= BUSY:
externat transition:
(proc_status==8BUSY) * ready => { proc_status:= IDLE; }
(proc_status==IDLE} * in => { g_length:=q_length+1; }
(proc_status==BUSY} = in => { a_length:=qg_length+1;continue: }
output function:
((a_length>0)&&(proc_status==IDLE}) => out;
time advance:
({a_length>0)&&(proc_status==|DLE)) => 0:
((a_length>0)&&(proc_status==BUSY)) => infinity:
(a_length==0) => infinity:
end Buff;

interface SSQ
inputs: {}
outputs: {}
end SSQ;
coupled model S5Q
component: {
Genr : Generator,
Transd : Transducer,
Buf : Buff,
l;roc » Processor
external input coupling: { }
external output coupling: { }
internal coupling: {
Genr.out —> Buf.in,
Buf.out => Proc.in,
Proc.done —> Buf.ready,
Proc.done ~>» Transd.done,

Transd.stop ~> Genr.stop

}
end S8

Fig. 3 DEVSIF example.

HI. SIMULATION OVERHEAD

Simulation of DEVS models requires a simulation
algorithm which interprets dynamics of model’s
specification. In DEVS theory, the algorithm is
implemented as abstract simulators each of which is
associated with a component of an overall hierarchical
DEVS model in an one-to-one manner. Thus,
simulation of DEVS models is performed such a way
that event scheduling and message passing between
such component models are done in a hierarchical
manner.

Basically the abstract simulators algorithm[1] for
DEVS models repeatedly performs two tasks: 1) an event
synchronization task, and 2) a scheduling task. In the
event synchronization task, a next scheduled component,
which has the earliest next schedule time among the
components, generates an output event with a state
transition specified in internal transition function. At the
same time, all the components whose input events are

coupled with the output event are influenced, 1.e. they
change their state variables specified in external state
transition functions. To find such components a
coupling scheme specified in coupled models are to be
referred. Those influenced components and the
influencing component are simply named as influencees
and influencer, respectively. On the other hand, the
scheduling task, which follows the event synchronization
task, determines the next scheduled component and its
activation time.

Lee and Kim [3] has shown that the composition
method could be successfully applied to increase the
simulation speed. Our tool, DEVSIF composer, can build
a composed model automatically just within a second
from the conventional DEVS components.

IV. DEVSIF COMPOSER

DEVSIF Composer i1s a tool that does the
composition operation on DEVSIF models. It is
expected that the composed model would be executed
faster than the original one, since it does not employ
message passing activity. However, it 1s a disadvantage
of composition that the composed model shows bad
readability and is difficult to maintain them for later
modification.

DEVSIF composer currently runs on Linux platform.
The tool operate fast enough as the composition 1s just a
process of merging the parts of the transition rules of
atomic models into a combined transition function. In
contrast, the composition operation in the area of static
analysis area of model checking needs to explore all the
reachable states from the initial states, which requires
very expensive computation power in fact.

A. Implementation of Composition Process

The composition process consists of three step
procedures.

The first step 1s the process of flattening all. The
hierarchical model structure becomes flattened after this
step. In this process, the priority order between the
components are decreases as it appear later at the select
statement.

Renaming process i1s the next step. If two or more
of instances are created from the same atomic model,
then the names of their member state variables are the
same. To avoid referencing collision, all the symbol
labels used for state variables need to be renamed 1n
this step.

Finally, the third step is the process of merging the
state transition functions which are mfluenced by the
same event. While, the scheduling job 1s done at
coordinators in a hierarchical manner at the original
model, the composed model should have its own
scheduling capability. Thus additional scheduling
mechanism is required and there is a class library which
supports scheduling task.

Following this procedure, a composed model can be
constructed.



62 Wan-Bok Lee : DEVSIF Composer: A Synthesis Tool for Fast Interpretation of Simulation Models

B. Considerations for Efficient Code Generation

Following points were taken into consideration
such that DEVSIF composer can generate more
efficient code.

1) Using absolute time for scheduling rather than

relative time

Whenever an event is executed, all the influenced state
variables are updated. These state variables include not
only the state variables of components but also the
variables used to store the elapsed time of components.
Notice that the total state space is the Cartesian product
of (s, e;) space. ¢; 1s a clock variables used to store the
elapsed time of i’th component after it made a state
transition. Whenever an event happens each ¢; tends to
be modified.

Specifically, if the component of the event is an
influencee or an influencing one, its value is updated by
a time advance function. Otherwise, it is decremented by
the amount of elapsed time. This mechanism has a
drawback in that almost every clock variables need to be
updated whenever an event occurs. We can overcome
this drawback if we manage the scheduling times of
components as absolute values rather than relative ones.
The next influencing component has the minimum of the
left time to next schedule.

Representing the scheduling time in an absolute
time-base makes no difference to this scheduling job.
Moreover, both the elapsed time e; and the left
scheduling time o; can be computed from the absolute
time representation. As a result, the generated code for
scheduling job became based on an absolute time-base.
It 15 expected that this mechanism would be more
efficient when the number of composed components
Increases.

2) Linking with external scheduling library

The composed model must have its own local
scheduling capability to choose the next event
happening. This is resolved by the internally reserved
function, Local sched() which resides in an external
library, its source code was built of C-language.
Currently, the Local sched() function is implemented
based-on linked list data structure and requires the
other auxiliary state variables such as comp no, tNext,
and prio as argument variables. comp no denotes the
number of components that will be aggregated and the
variables tNext and prio means the next schedule time
and the static priority of each component. The next
schedule time stored in tNext is specified an absolute
time. Because, these variables are defined in DEVSIF
specification it needs to be shared with the external
scheduling library. Thus, they are defined as shared
type 1n DEVSIF specification. Local sched() selects
the index of an element that has the minimum value of
tNext. If two or more components have the same
minimum value, then it selects one which has the least
value of priority. The element corresponds to the least
element of partial order relation.

3) Enhancing code readability by using member

functions

The composed model has many state variables and
state transitions. This complexity becomes larger as the
more components are attended. Thus, the composed
model might show bad readability and it may be
difficult to understand. Each merged function is a
combination of the characteristic functions of the
influencing or the influences. To enhance the
readability, the code generator defines all the related
characteristic functions as member functions. And the
functions are called at the merged characteristic
function describing that they have an influence relation
with a dedicated influencer.

After composition, the generated code reflects the
influence relations among the components. For example,
when the model Proc generates an output event done, an
internal transition rule of Processor and an influenced
external transition rule of the Buff are invoked. They are
placed in the same block in a composed transition rule
and executed sequentially. Because there takes place no
message passing in this process, it is expected the
simulation run-time would be much less. Quantitative
measure of the simulation speedup would be given in the
next section.

V. EXPERIMENTAL RESULTS

The simulation speedup has been evaluated by the use
of a discrete event simulation environment,
DEVSim++[8]. Three kinds of example models were
tested on an [BM PC. The GNU profile tool, gprof was
used to measure the simulation time. The first example
model is Single Server Queue, which consists of four
atomic models. The second model, CSMA/CD consists of
three coupled models STATION and an atomic model
MEDIA. STATION refers to a network node, which 1is
connected to the physical network media and has two
atomic models GEN and SEND. The third model,
Columbian Health Care System (CHCS) has been
experimented. The model has been used in various
studies[10].

Table 1 indicates the experimental results.
Experiments were done for several cases varying the
number of components. We measured two cases of
simulation time for each model. The first 1s the
simulation time of the original model, the second is that
of the model obtained by the composition tool, DEVSIF
composer. As shown in Table 1, the composition
improved the execution speed approximately 5.3
((8.115.4+4.6+4.5+3.9+5.7+5.1+ 5.0) / 8) times on
average. Table 1 shows that the simulation speedup has
been decreased very slightly as the components of the
overall system are increased. This fact is because that our
external scheduling library was implemented as a linked
list of which computation time 1s linear proportional to
the number of components.



International Journal of KIMICS, Vol. 6, No. 1, March 2008

63

Table 1 Simulation speedup

Example Sim. Time |
name Type (sec.) Speedup
SSQ Original 66.6 1.0
Composed R 1 21
CSMA/CD3 | Yriginal 121.0 1.0
Composed 226 5 4
CSMA/CDe  |-Qriginal 2146 | 1.0
Composed 46.6 4.6
CcsSMA/CcDy | Onginal 3342 [ 1.0
Composed 74.8 4.5
csMA/CD12  [Qrigimal 431.9 [ 1.0
Composed 111.0 3.9
CHCSS Original g 0 1.0
Composed 1.4 57
CHCS14 Original 15.5 1.0
Composed 3.0 51
CHCS?2? Original 28.4 1.0
Composed 5.7 50
Vi. CONCLUSION
This paper introduces an automated compiled

simulation tool, DEVSIF composer, which improves
significant speedup for discrete event simulation. The
tool 1s an implementation of model composition which
was mtroduced at [3]. Since message passing time
among the components was shortened after applying the
tool, we could easily accelerate the simulation speed.

By experimenting three kinds of example models, we
found that the composed model could be simulated
approximately 5 times faster that the original model. And
because the synthesis time taken by the tool was less
than a second, the tool must be a very effective one.

However the data structure adopted at the tool is based
on linked list which would be inefficient when the
number of components becomes larger. In this case,

more elegant data structures or algorithms can be applied
such as MIN heap[11].

ACKNOWLEDGMENT

This work was supported in part by Kongju National
Umniversity (KNU), Project No. 2007-0097.

REFERENCES

[1] B. P. Zegler, Multifacetted Modelling and Discrete
Event Simulation. Academic Press. 1984.

[2] D. M. Lewis, “A hierarchical compiled code even-driven
logic simulator,” IEEE Transactions on Computer-Aided
Design, vol. 10, no. 6, pp. 726-737, 1991.

[3] W. B. Lee, T. G Kim, “Performance Evaluation of
Concurrent System Using Formal Model: Simulation
Speedup”, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences,
vol. E86-A, no. 11, pp: 755-2766, Nov. 2003.

[4] A. I Concepcion, and B. F. Zeigler, “DEVS Formalism:

A Framework for Hierarchical Model Development”,
[EEE Trans. on Software Engineering, vol. 14, no. 2,
Feb. 1988.

[5] K. J. Hong and T. G Kim, “DEVSIF : Relational
Algebraic DEVS Intermediate Format,” Proceedings of
AIS" 2000, Tucson, Arizona, U.S.A., 2000.

[6] G P. Hong and Tag G. Kim, “A Framework for Verifying
Discrete Event Models Within a DEVS-Based System
Development Methodology,” Transactions of the Society
for Computer Simulation, vol. 13, no. 1, pp.19-34, 1996.

[7] C. Thomas, H. Luckhoff, and T. G Kim, “OpenDEVS:
A Proposal for a Standardized DEVS Model Exchange
Format”, Proc. of AIS "96, pp. 371-377.

[8] T. G Kim, and S. B. Park, “The DEVS Formalism:
Hierarchical Modular Systems Specification in C++" In
Proceedings of the 1992 European Simulation
Multiconference, pp.152-156, 1992.

[9] Y. G Kim and T. G Kim, “Optimization of Model
Execution Time in the DEVSim++ Environment”. /n
Proc. of 1997 Euvopean Simulation Symposium, pp.
215-219, Oct. 1997, Passau, Germany.

[10] D. Baezner, G Lomow, and B.W. Unger. “Sim++: The
Transition to Distributed Simulation.” In Proceedings of
the SCS Multiconference on Distributed Simulation,
1990.

[11]1). W. J. Williams. Algorithm 232 - Heapsort,
Communications of the ACM 7(6): 347-348, 1964.

Wan-Bok Lee

received the B.E, M.E, and Ph.D.
degrees in electrical engineering from
Korea Advanced Institute of Science
and Technology (KAIST), Daejeon,
Korea, in 1993, 1995, and 2004,
respectively. He 1s presently an
Assistant Professor at the Department
of Game Design, Kongju National University, Kongju,
Chungnam, Korea. His research interests include game
programming, methodology for modeling and simulation of
discrete event systems, and information security.




