• Title/Summary/Keyword: DESTRUCTIVE TESTING

Search Result 605, Processing Time 0.026 seconds

Strength Evaluation of Fire-Damaged High Strength Concrete by Non-Destructive Tests (비파괴방법에 의한 화해를 입은 고강도 콘크리트의 강도추정)

  • Kim Hee Sun;Park Jae Young;Choi Eun Gyu;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.392-395
    • /
    • 2004
  • When a concrete member is damaged by fire accident, it can lose its strength. And the degradation rate of losing its strength affected by many environmental conditions. But there is few research for equation for strength evaluation of fire-damaged concrete. Besides, it is impossible to destruct structural member from the building for the evaluation. So, I will suggest a new equation for strength evaluation of fire-damaged RC beam using non-destructive test. For this purpose, the researchers are exploring the performance of non-destructive testing methods using Ultrasonic test, Schmidt Hammer test and Coring test against fire damaged concrete specimen.

  • PDF

Speckle Noise Reduction and Flaw Detection of Ultrasonic Non-destructive Testing Based on Wavelet Domain AR Model (웨이브렛 평면 AR 모델을 이용한 초음파 비파괴 검사의 스펙클 잡음 감소 및 결함 검출)

  • 이영석;임래묵;김덕영;신동환;김성환
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • In this paper, we deal with the speckle noise reduction and parameter estimation of ultrasonic NDT(non-destructive test) signals obtained during weld inspection of piping. The overall approach consists of three major steps, namely, speckle noise analysis, proposition of wavelet domain AR(autoregressive) model and flaw detection by proposed model parameter. The data are first processed whereby signals obtained using vertical and angle beam transducer. Correlation properties of speckle noise are then analyzed using multiresolution analysis in wavelet domain. The parameter estimation curve obtained using the proposed model is classified a flaw in weld region where is contaminated by severe speckle noise and also clear flaw signal is obtained through CA-CFAR threshold estimator that is a nonlinear post-processing method for removing the noise from reconstructed ultrasonic signal.

  • PDF

Mining Information in Automated Relational Databases for Improving Reliability in Forest Products Manufacturing

  • Young, Timothy M.;Guess, Frank M.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.155-164
    • /
    • 2002
  • This paper focuses on how modem data mining can be integrated with real-time relational databases and commercial data warehouses to improve reliability in real-time. An important Issue for many manufacturers is the development of relational databases that link key product attributes with real-time process parameters. Helpful data for key product attributes in manufacturing may be derived from destructive reliability testing. Destructive samples are taken at periodic time intervals during manufacturing, which might create a long time-gap between key product attributes and real-time process data. A case study is briefly summarized for the medium density fiberboard (MDF) industry. MDF is a wood composite that is used extensively by the home building and furniture manufacturing industries around the world. The cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs. Prevention can result In millions of US dollars saved by using better Information systems.

  • PDF

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks

  • Alexandridis, Alex;Stavrakas, Ilias;Stergiopoulos, Charalampos;Hloupis, George;Ninos, Konstantinos;Triantis, Dimos
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.919-932
    • /
    • 2015
  • This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.

Predicting the unconfined compressive strength of granite using only two non-destructive test indexes

  • Armaghani, Danial J.;Mamou, Anna;Maraveas, Chrysanthos;Roussis, Panayiotis C.;Siorikis, Vassilis G.;Skentou, Athanasia D.;Asteris, Panagiotis G.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.317-330
    • /
    • 2021
  • This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15 MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

Welding Residual Stress Measurement by Ultrasonic Method (초음파를 이용한 용접잔류응력 측정기술)

  • Lee, S.S.;Ahn, B.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 1989
  • Welding residual stress was measured by ultrasonic birefringence technique. Acoustoelastic constant was taken by averaging the values in the literature. The initial birefringence from prefered orientation of grains was measured. The EMAT transducers were used to remove couplant effect. The results show that the distribution and magnitude of welding residual stress from ultrasonic measurement are in good agreements with those from semi destructive hole drilling measurement.

  • PDF

Eddy Current Testing(I) (와전류탐상범(渦電流探傷法)(I))

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.94-100
    • /
    • 1993
  • 이번 호부터 해설란을 통하여 비파괴검사(非破壞檢査) 기술(技術)에 대한 연재를 시작한다. 앞으로 비파괴검사(非破壞檢査) 기술(技術) 각 분야에 대해 다룰 예정이며 우선 1차적으로 와전류탐상법(渦電流探傷法)에 관해 3회에 걸쳐 게재하기로 한다. 특정한 비파괴검사(非破壞檢査)의 전문가가 아니더라도 쉽게 이해할 수 있도록 가급적 수식은 배제하고 기초적인 이론을 소개할 것이며 특히 현장 적용에 중점을 두어 기술(記述)하고자 한다. 본 원고에서는 원거리 와전류탐상법(渦電流探傷法)(remote field eddy current testing) 이나 펄스 와전류탐상법(渦電流探傷法)(pulsed eddy current testing)과 같은 특수 와전류(渦電流) 기술(技術)은 제외하였으며 본 연구실에서 내부 교육용으로 사용하는 "와전류탐상법(渦電流探傷法) Level I 과정"과 미국금속학회에서 발행한 Metal Handbook, 9th ed., Vol. 17, "Non-destructive Evaluation and Quality Control" 및 기타 관련 기술 자료들을 참고하였으나 일일이 명기하지는 않는다.

  • PDF