Differential evolution (DE) algorithm is presented and applied to global optimization in this research. DE suggested initially fur the solution to Chebychev polynomial fitting problem is similar to genetic algorithm(GA) including crossover, mutation and selection process. However, differential evolution algorithm is simpler than GA because it uses a vector concept in populating process. And DE turns out to be converged faster than CA, since it employs the difference information as pseudo-sensitivity In this paper, a trial vector and its control parameters of DE are examined and unconstrained optimization problems of highly nonlinear multimodal functions are demonstrated. To illustrate the efficiency of DE, convergence rates and robustness of global optimization algorithms are compared with those of simple GA.
The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.
Orthogonal frequency division multiple access (OFDMA) is a promising technique, which can provide high downlink capacity for the future wireless systems. The total capacity of OFDMA can be maximized by adaptively assigning subchannels to the user with the best gain for that subchannel, with power subsequently distributed by water-filling. In this paper, we propose the use of composite differential evolution (CoDE) algorithm to allocate the subchannels. The CoDE algorithm is population-based where a set of potential solutions evolves to approach a near-optimal solution for the problem under study. CoDE uses three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. In CoDE, three trial vectors are generated for each target vector unlike other differential evolution (DE) techniques where only a single trial vector is generated. Then the best one enters the next generation if it is better than its target vector. It is shown that the proposed method obtains higher sum capacities as compared to that obtained by previous works, with comparable computational complexity.
Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm which has been widely applied and shown its strength in many application areas. However, the applications of DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm (1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size problems with relatively fast computing time.
This paper presents a new approach for thermal unit commitment (UC) using a differential evolution (DE) algorithm. DE is an effective, robust, and simple global optimization algorithm which only has a few control parameters and has been successfully applied to a wide range of optimization problems. However, the standard DE cannot be applied to binary optimization problems such as UC problems since it is restricted to continuous-valued spaces. This paper proposes binary differential evolution (BDE), which enables the DE to operate in binary spaces and applies the proposed BDE to UC problems. Furthermore, this paper includes heuristic-based constraint treatment techniques to deal with the minimum up/down time and spinning reserve constraints in UC problems. Since excessive spinning reserves can incur high operation costs, the unit de-commitment strategy is also introduced to improve the solution quality. To demonstrate the performance of the proposed BDE, it is applied to largescale power systems of up to 100-units with a 24-hour demand horizon.
차분 진화는 다양한 형태의 목적함수를 최적화하는데 매우 효율적인 방법임이 입증되었다 차분 진화의 가장 큰 이점은 개념적 단순성과 사용의 용이성이다. 그러나 차분 진화의 수렴성이 제어 파라미터에 매우 민감한 단점이 있다. 본 논문은 새로운 교배용 벡터 생성법과 제어 파라미터의 적응 메커니즘을 결합한 적응성 있는 차분 진화를 제안한다. 이는 수렴성을 해치지 않으면서 차분 진화를 보다 강인하게 만들며 사용이 쉽도록 해준다. 12가지 최적화 문제에 대해 제안한 방법을 시험하였다. 적응성 있는 차분 진화의 응용 사례로써 이벤트 예측을 위한 교사 클러스터링 방법을 제안한다. 이 방법을 진화에 의한 이벤트 클러스터링이라 부르며 데이터 모델링 검증에 널리 사용되는 4 가지 사례에 대해 그 성능을 시험하였다.
Journal of information and communication convergence engineering
/
제17권4호
/
pp.261-266
/
2019
Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.
Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
Journal of Electrical Engineering and Technology
/
제8권4호
/
pp.686-693
/
2013
Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.
This paper presents the application of Differential Evolution (DE) algorithm to obtain a solution for Bid Based Dynamic Economic Dispatch (BBDED) problem including the transmission losses and to maximize the social profit in a deregulated power system. The IEEE-30 bus test system with six generators, two customers and two trading periods are considered under various bidding strategies in a day-ahead electricity market. By matching the bids received from supplying and distributing entities, the Independent System Operator (ISO) maximize the social profit, (with the choices available). The simulation results of DE are compared with the results of Particle swarm optimization (PSO). The results demonstrate the potential of DE algorithm and show its effectiveness to solve BBDED.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.