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Thermal Unit Commitment Using Binary Differential Evolution 
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Jong-Bae Park† and Joong-Rin Shin** 

 
Abstract – This paper presents a new approach for thermal unit commitment (UC) using a differential 
evolution (DE) algorithm. DE is an effective, robust, and simple global optimization algorithm which 
only has a few control parameters and has been successfully applied to a wide range of optimization 
problems. However, the standard DE cannot be applied to binary optimization problems such as UC 
problems since it is restricted to continuous-valued spaces. This paper proposes binary differential evo-
lution (BDE), which enables the DE to operate in binary spaces and applies the proposed BDE to UC 
problems. Furthermore, this paper includes heuristic-based constraint treatment techniques to deal with 
the minimum up/down time and spinning reserve constraints in UC problems. Since excessive spin-
ning reserves can incur high operation costs, the unit de-commitment strategy is also introduced to im-
prove the solution quality. To demonstrate the performance of the proposed BDE, it is applied to large-
scale power systems of up to 100-units with a 24-hour demand horizon. 
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1. Introduction 
 
Unit commitment (UC) involves scheduling the on/off 

states of generating units to minimize the operating cost for 
a given time horizon. The committed units must meet the 
system’s forecasted demand and spinning reserve require-
ment at minimum operating cost, subject to a large set of 
operating constraints. The UC problem, one of the most 
important tasks in short-term operation planning of modern 
power systems, has a significant influence on the secure 
and economic operation of power systems [1]. Optimal 
commitment scheduling cannot only save millions of dol-
lars for power companies, it also ensures system reliability 
by maintaining the proper spinning reserve. The UC prob-
lem is mathematically formulated as a nonlinear, large-
scale and mixed integer combinatorial optimization prob-
lem [2-16]. The number of combinations of 0-1 variables 
grows exponentially for a large-scale UC problem. There-
fore, the UC is one of the most difficult problems in the 
area of power system optimization. 

Over the past decades, many salient optimization meth-
ods have been developed to solve the UC problem. The 
exact solution to the problem can be obtained only by 
complete enumeration, which cannot be applied to realistic 
power due to its excessive computation time requirements 
[1]. Research efforts, therefore, have concentrated on effi-
cient and near-optimal UC algorithms which can be applied 
to realistic power systems and have reasonable storage and 

computation time requirements. The optimization methods 
for UC problems can be divided into two classes through a 
survey of literature as follows: The first are numerical op-
timization techniques such as priority list methods [2,3], 
dynamic programming [4,5], Lagrangian relaxation meth-
ods [6,7], branch-and-bound methods [8], and mixed-
integer programming [9]. The other are stochastic search 
methods such as genetic algorithms (GA) [10,11], evolu-
tionary programming (EP) [12,13], simulated annealing 
(SA) [14,15], and particle swarm optimization (PSO) [16]. 

Differential evolution (DE) developed by Storn and 
Price [17] is a simple yet powerful heuristic optimizer for 
solving nonlinear, non-differentiable, and multi-modal op-
timization problems. In DE, the fitness of an offspring 
competes one-to-one with that of the corresponding parent. 
This one-to-one competition, which is different from other 
evolutionary algorithms (EAs), gives rise to a faster con-
vergence rate. In addition, DE has a limited number of pa-
rameters, which include mutation factor, crossover rate and 
population size, in comparison with other competing heu-
ristic optimization methods [18]. 

This paper presents a new DE-based approach for solv-
ing UC problems. Many optimization problems, including 
UC problems, are set in a space featuring discrete, qualita-
tive distinctions between variables and between levels of 
variables. However, the standard DE algorithms have oper-
ated in only continuous spaces. This paper proposes the 
binary version of the DE algorithm, called binary differen-
tial evolution (BDE), to find the optimal solution in binary 
optimization problems and applies the proposed BDE to 
UC problems. The binary version of DE enables the DE to 
operate in binary spaces. The structure of the algorithm is 
effectively the same as the standard DE. The difference of 
the BDE, compared to the standard DE, is that the individ-
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ual's chromosome is a binary vector. 
In addition, to effectively satisfy the minimum up/down 

time and spinning reserve constraints in UC problems, heu-
ristic-based constraint treatment techniques are proposed in 
order to improve the solution quality without causing a 
decline in computational efficiency. To prevent high oper-
ating costs due to excessive spinning reserves, the unit de-
commitment approach is also proposed. To demonstrate the 
performance of the proposed BDE, test systems of up to 
100-units along with 24-hour load demands are tested and 
its results are compared with those of previous works. 

 
 

2. Formulation of Unit Commitment 
 
2.1 Objective Function 
 

The main objective of the UC problem is to minimize 
the total operating cost of generating units during the 
scheduling horizon, subject to a number of system and unit 
constraints [1]. The overall objective function of the UC 
problem is expressed as the sum of fuel, start-up, and shut-
down costs of generating units. 

 
1) Fuel Cost Function 

For all committed generating units, the total fuel cost is 
minimized by economically dispatching the units. The fuel 
cost function of unit i  at hour t  is expressed as a second 
order polynomial as follows: 

2
,,, )( tiitiiitii PcPbaPF ++=             (1) 

where tiP ,  is the power generation of unit i  at hour t  

and iii cba ,, are the cost coefficients of unit i . 
 
2) Start-Up Costs 

Start-up costs for restarting a decommitted thermal unit, 
which is related to the temperature of the boiler, is included 
in the model. That is, the start-up cost depends on the 
number of hours during which the unit has been off. Start-
up costs will be a high cold cost ( iCSU , ) when down time 

duration exceeds the cold start hour ( icoldT , ) in excess of 

minimum down time and will be a low hot cost ( iHSU , ) 
when down time duration does not exceed the cold start 
hour in excess of minimum down times. In general, the 
start-up cost is described in the two-step function as fol-
lows: 
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where tiTOFF ,  is the duration for which unit i  is con-

tinuously off-line at hour t  and iMDT  is the minimum 
down-time of unit i . 
 
3) Shut-Down Costs 

Shut-down costs are usually modeled as a constant 

value for each unit per shutdown. In this paper, the shut-
down costs have been taken as equal to 0 for all units, and 
is excluded from the objective function. 

Consequently, the UC objective function is given by the 
minimization of the following cost function: 
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where T  is the number of scheduling periods, N  is the 
number of generating units, and ti ,α  is the on/off status of 

unit i  at hour t . ti ,α  is set to be 1 when unit i  is on-

line, and ti ,α  is set to be 0 when unit i  is off-line. 
 
2.2 System Constraints 

 
1) Load Balance Constraints 

The sum of the unit generation output at each hour must 
satisfy the system load demand requirement of the corre-
sponding hour as follows: 

∑
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where tPD  is the total system demand at hour t . 
 
2) Spinning Reserve Constraints 

Spinning reserves must be available during the opera-
tion of a power system in order to minimize the probability 
of load interruption. The reserve is considered to be a pre-
specified amount or a given percentage of the forecasted 
peak demand. Spinning reserves can be specified in terms 
of excess megawatt capacity, which is expressed by 
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where tSR  is the required spinning reserve at hour t . 
 
3) Generation Limit Constraints 

The power produced by each unit must be within cer-
tain limits, as indicated below: 

max,,,min,, ititiiti PPP αα ≤≤             (6) 
 

where min,iP  and max,iP  are the minimum and maximum 
generation limits of unit i , respectively. 
 
4) Generation Ramping Constraints 

Due to the unit mechanical and thermal stress limita-
tions, the ramp-up and ramp-down constraints are given 
below: 

ititii RUPPRD ≤−≤ − )1,(,             (7) 

where iRD  and iRU  are the ramp-down and ramp-up 
limits of unit i , respectively. 
 
5) Minimum Up-Time/Down-Time Constraints 

The unit cannot be turned off immediately once it is 
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committed, and vice versa. The minimum up/down time 
constraints indicate that a unit must be on/off for a certain 
number of hours before it can be shut off or brought online, 
respectively. These constraints are given by 

iti MUTTON ≥,                  (8) 

iti MDTTOFF ≥,                  (9) 

where tiTON ,  is the duration for which unit i  is con-

tinuously on-line at hour t  and iMUT  is the minimum 
up-time of unit i . 
 
 

3. BDE for UC Problems 
 
3.1 Overview of DE 

 
A DE developed by Storn and Price [17] is a popula-

tion-based evolutionary computation technique. Due to its 
simple but powerful and straightforward features, it is very 
attractive for resolving global optimization problems. In 
DE, the fitness of an offspring competes one-to-one with 
that of the corresponding parent. This one-to-one competi-
tion will give rise to a faster convergence rate than other 
EAs. In addition, only a few control parameters are re-
quired in comparison with other competing heuristic opti-
mization methods [18]. The basic algorithm of DE typi-
cally consists of four phases: 1) initialization, 2) mutation, 
3) crossover, and 4) selection phases. The mutation and 
crossover are used to generate new individuals, and selec-
tion then determines that the individuals will survive into 
the next generation. The performance of a DE algorithm 
usually depends on three parameters, i.e., population size, 
mutation factor, and crossover rate [17], [18]. The proce-
dure of DE can be summarized as the following pseu-
docode: 

 

 
Fig. 1. Pseudocode of the DE 

 
3.2 Implementation of BDE for UC Problems 

 
Since the UC in power systems involves determining 

the on/off states of generating units that minimize the oper-
ating cost for a given time horizon, the decision variables 
are the on/off status of generating units. After determining 
the optimal combination of commitment scheduling, the 
optimal power outputs of the committed units are deter-
mined through an economic dispatch (ED) procedure. Since 

the fuel cost function of a generating unit is approximately 
represented as a quadratic function as described in (1), the 
ED problem can be solved by numerical techniques. 

For searching in parallel as with other evolutionary al-
gorithms, a population of individuals at the kth generation 
is represented as ,),(),({)( 21 LkXkXkX =  )}(kX NP , 
where NP is the population size. Here, the ith indi-
vidual is represented as the binary target vector  

)}(,),({)( 1 kxkxkX iNii L= , ],,1[ NPi∈ which is 
formed by selecting either 0 or 1 for each bit. In the subse-
quent sections, the detailed procedures of BDE for schedul-
ing the on/off states of units are described. 

 
1) Initialization of population 

In the initialization process, the initial individuals are 
randomly chosen. After generating a random number ijr  
between 0 and 1, an initial value of the jth element in the 
ith individual (i.e., )0(ijx ) takes a value of 1 if ijr  is less 

than 1/2, otherwise )0(ijx  set to be 0. 
 

2) Mutation operation 
A mutant vector )}(,)(),({)( 21 kukukukU iNiii L=  

is generated based on the present individual )(kX i  as 
follows: 

))]()(()(sign[)( 321 kXkXMFkXkU rrri −×+=  (10) 

with random indices ],1[,, 321 NPrrr ∈ . Note that the ran-

domly chosen integers 21, rr and 3r  are have to be differ-
ent from each other and from the running index i (i.e. 

321 rrri ≠≠≠ , ), so that NP  must be at least four. 

MF  is the mutation factor. In the standard DE, MF  is 
a real and constant factor, which controls the amplification 
of the difference between two individuals and is usually 
taken from the range [0,1]. In the proposed BDE, however, 
MF  is set as 1.0 since each element in the individuals 
takes a value of 0 or 1. The sign function in (10) is defined by: 
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3) Crossover operation 

In order to increase the diversity of the population, 
crossover is introduced. The trial vector 

)}(,)(),({)( 21 kvkvkvkV iNiii L=  is generated as follows: 
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for j=1,2,…,N. CR is the crossover rate in the range [0,1]. 
 

4) Selection operation 
To create the new population in the next generation 

1k + , the fitness value of the trial vector ( )iV k  is com-

pared with its parent vector ( )iX k . If the trial vector 
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( )iV k  yields a smaller cost function value than ( )iX k , 

then ( 1)iX k +  is set to ( )iV k . Otherwise, the target 

vector ( )iX k  is retained. 

⎩
⎨
⎧ ≤

=+
otherwise   )(

))(())(( if   )(
)1(

kX
kXfkVfkV

kX
i

iii
i     (13) 

 
5) Stopping Criteria 

The proposed algorithm is terminated if the iteration 
reaches a pre-specified maximum iteration. 

 
3.3 Constraints Treatment Method 

 
Penalty functions are the most popular methods in AI-

based optimization techniques to handle the system con-
straints due to their simple concept and convenience to 
implement. However, these methods have certain weak-
nesses as the penalty functions tend to be ill-behaved near 
the boundary of the feasible region when the penalty pa-
rameters are large [19]. To overcome these penalty function 
drawbacks, therefore, this paper proposes efficient heuris-
tic-based constraint treatment methods. 

It is very important to create a population satisfying the 
constraints when solving UC problems. This paper pro-
poses constraint-handling techniques for the minimum 
up/down time and the spinning reserve constraints. In the 
evolutionary process for solving UC problems, random bits 
flipping of state variables occurs, thereby the constraints 
may be frequently violated. In this paper, therefore, heuris-
tic-based repair algorithms are proposed to accelerate the 
solution quality and to avoid generating infeasible solu-
tions. To reduce the operating costs incurred by the exces-
sive spinning reserve, the unit de-commitment approach is 
also proposed. 

 
1) Minimum Up-Time and Down-Time Constraints 

 

 
Fig. 2. Pseudocode for handling the minimum up-time and 

down-time constraints 

When modifying the position of each particle, the mini-
mum up/down time constraints should be satisfied. To do 
this, this paper proposes a heuristic-based constraint treat-
ment technique as illustrated in the pseudo-code below. 

 
2) Spinning Reserve Constraint 

Adequate spinning reserves are required to maintain the 
system’s reliability for a given time horizon. If the spinning 
reserve constraint is violated, the system suffers from a 
deficiency in its units. This paper proposes an efficient 
heuristic-based repair method which is launched when the 
spinning reserve is deficient at any scheduling period in 
order to avoid generating infeasible solutions. In the pro-
posed repair process, de-committed units are forced to turn 
on until the spinning reserve constraint is satisfied as 
shown in Fig. 3. 
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Fig. 3. Flowchart of repair algorithm for handling spinning 

reserve constraint 
 

3) Unit De-commitment for Excessive Spinning Reserve 
An excessive spinning reserve is not desirable due to 

the high operation cost. Therefore, this paper proposes a 
heuristic-based unit de-commitment process to reduce the 
excessive spinning reserve, leading to cost savings, as il-
lustrated in Fig. 4. 
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Fig. 4. Flowchart of unit de-commitment for prevention of 

excess spinning reserve 
 
 

4. Case Studies 
 
The proposed BDE is initially tested on a system of 10 

generating units along with a 24-hour time horizon. The 
unit characteristics of the base 10-unit system and the de-
mand are given in [10]. Subsequently, the 20, 40, 60, 80, 
and 100 unit data are obtained by duplicating the base case 
(10 units), and the load demands are adjusted in proportion 
to the system size. In all cases, the spinning reserve re-
quirements are assumed to be 10% of the hourly demand. 
For each test case, 50 independent trials are conducted to 
compare the solution quality and convergence characteris-
tics. Numerical tests have been executed on a Pentium VI 
2.0GHz computer. 

In implementing the proposed algorithms, some pa-
rameters must be determined in advance. In this paper the 
parameters were set through experiments as follows: 
　- Population size NP = 20; 
　- Maximum iteration count maxiter  = 1,000; 
　- Crossover rate CR = 0.1. 
The best, average, worst costs, and standard deviation 

for the test systems achieved by the proposed BDE algo-
rithm are summarized in Table 1. 

 
Table 1. Simulation results of the proposed BDE for the 

test systems 
Units Best Cost ($) Average Cost ($) Worst Cost ($) Standard 

Deviation
10 563,997 563,997 563,997 0 
20 1,123,998 1,124,374 1,124,927 217.79 
40 2,245,700 2,246,600 2,247,284 361.77 
60 3,367,066 3,367,405 3,367,783 244.55 
80 4,489,022 4,490,456 4,491,262 533.74 

100 5,609,341 5,609,984 5,610,608 346.73 

In Table 2, the best results of the BDE are compared 
with those of Lagrange relaxation (LR) [10], genetic algo-
rithm (GA) [10], evolutionary programming (EP) [12], 
simulated annealing (SA) [15], and improved particle 
swarm optimization (IPSO) [16]. Table 2 reveals that the 
proposed BDE is obviously superior to the existing meth-
ods although it couldn't obtain a better solution than the 
IPSO for the 10-unit system. 
 
Table 2. Comparison of best results of each method 

Method 10-unit 20-unit 40-unit 60-unit 80-unit 100-unit

LR [10] 565,825 1,130,660 2,258,503 3,394,066 4,526,022 5,657,277

GA [10] 565,825 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437

EP [12] 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885

SA [15] 565,828 1,126,251 2,250,063 N/A 4,498,076 5,617,876

IPSO[16] 563,954 1,125,279 2,248,163 3,370,979 4,495,032 5,619,284

BDE 563,977 1,123,998 2,245,700 3,367,066 4,489,022 5,609,341

 
For the 10-unit and 100-unit systems, the commitment 

schedules during a planning horizon obtained by the pro-
posed BDE are described in Table 3 and Table 4, respec-
tively. 

 
Table 3. Unit scheduling and corresponding cost for 10-

unit system 
 

Generation Output 
Hr

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 
Total

Power
Fuel
Cost

Startup
Cost

1 455 245 0 0 0 0 0 0 0 0 700 13,683 0 

2 455 295 0 0 0 0 0 0 0 0 750 14,554 0 

3 455 370 0 0 25 0 0 0 0 0 850 16,809 900 

4 455 455 0 0 40 0 0 0 0 0 950 18,598 0 

5 455 390 0 130 25 0 0 0 0 0 1,000 20,020 560 

6 455 360 130 130 25 0 0 0 0 0 1,100 22,387 1,100

7 455 410 130 130 25 0 0 0 0 0 1,150 23,262 0 

8 455 455 130 130 30 0 0 0 0 0 1,200 24,150 0 

9 455 455 130 130 85 20 25 0 0 0 1,300 27,251 860 

10 455 455 130 130 162 33 25 10 0 0 1,400 30,058 60 

11 455 455 130 130 162 73 25 10 10 0 1,450 31,916 60 

12 455 455 130 130 162 80 25 43 10 10 1,500 33,890 60 

13 455 455 130 130 162 33 25 10 0 0 1,400 30,058 0 

14 455 455 130 130 85 20 25 0 0 0 1,300 27,251 0 

15 455 455 130 130 30 0 0 0 0 0 1,200 24,150 0 

16 455 310 130 130 25 0 0 0 0 0 1,050 21,514 0 

17 455 260 130 130 25 0 0 0 0 0 1,000 20,642 0 

18 455 360 130 130 25 0 0 0 0 0 1,100 22,387 0 

19 455 455 130 130 30 0 0 0 0 0 1,200 24,150 0 

20 455 455 130 130 162 33 25 10 0 0 1,400 30,058 490 

21 455 455 130 130 85 20 25 0 0 0 1,300 27,251 0 

22 455 455 0 0 145 20 25 0 0 0 1,100 22,736 0 

23 455 420 0 0 25 0 0 0 0 0 900 17,685 0 

24 455 345 0 0 0 0 0 0 0 0 800 15,427 0 
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Table 4. Commitment scheduling for 100-unit system achieved 
by BDE 

 

Hr Unit Schedule 

1 1111111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000 

2 1111111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000 

3 1111111111111111111100000000000000000000000000100100000000000000000000000000000000000000000000000000 

4 1111111111111111111100000000000000000000111011111100000000000000000000000000000000000000000000000000 

5 1111111111111111111100000000000001001100111111111100000000000000000000000000000000000000000000000000 

6 1111111111111111111100000010001111111111111111111100000000000000000000000000000000000000000000000000 

7 1111111111111111111110001010111111111111111111111100000000000000000000000000000000000000000000000000 

8 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000 

9 1111111111111111111111111111111111111111111111111101110111000101101110000000000000000000000000000000 

10 1111111111111111111111111111111111111111111111111111111111111111111111111101011100000000000000000000 

11 1111111111111111111111111111111111111111111111111111111111111111111111111111111110111010110010000000 

12 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011111101 

13 1111111111111111111111111111111111111111111111111111111111111111111111100111110100100000000000000000 

14 1111111111111111111111111111111111111111111111111111011110101110101000000000000000000000000000000000 

15 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000 

16 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000 

17 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000 

18 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000 

19 1111111111111111111111111111111111111111111111111100000000000001010000000000000000000000000000000000 

20 1111111111111111111111111111111111111111111111111111111111111111111111011011111000000000100000000000 

21 1111111111111111111101000110111111111111111111111111111111111111111111000000000000000000000000000000 

22 1111111111111111111100000000001100100000010111110111111111111110101111000000000000000000000000000000 

23 1111111111111111111100000000000000000000010110010100000000000000000000000000000000000000000000000000 

24 1111111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000 

 
Fig. 5 illustrates the scaling of the execution time of the 

BDE with the system size. As shown in Fig. 5, the execu-
tion time of the BDE increases in a quadratic way with the 
number of units, and the approximate time of more than 
100-unit systems may be predicted from this curve. This 
implies that the proposed BDE can be applied to practical 
large-scale UC problems.  
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Fig. 5. Scaling of the average execution time of the BDE 

 
 

5. Conclusion 
 

DE is a floating-point encoding evolutionary algorithm 
for global optimization over continuous spaces and has 

been successfully applied to a wide range of optimization 
problems. However, standard DE algorithms have operated 
in continuous space. It is essential to develop a binary ver-
sion of DE since many optimization problems, including 
the UC problem, are set in a space featuring discrete, quali-
tative distinctions between variables and between levels of 
variables. In this paper, a new binary differential evolution 
(BDE) algorithm is proposed for binary optimization prob-
lems and is applied to UC problems. In addition, this paper 
proposes heuristic-based constraint treatment techniques to 
handle the minimum up/down time and spinning reserve 
constraints in UC problems. The unit de-commitment ap-
proach is also proposed in order to prevent the excessive 
spinning reserve for cost savings. The proposed BDE was 
applied to test power systems of up to 100-units along with 
24-hour load demands and the results were compared with 
those of previous works. The simulation results clearly 
reveal that the proposed BDE algorithm can be used as an 
excellent optimizer in solving large-scale UC problems. 
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