• Title/Summary/Keyword: DDM

Search Result 150, Processing Time 0.023 seconds

Changes of Feed Quality at Different Cutting Dates among Five Winter Cereals for Whole-Crop Cereal Silage in Middle Region (중부지역에서 총체맥류의 예취시기별 사료가치 변화)

  • Ju, Jung-Il;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2009
  • The objectives of this study were to evaluate the different cutting dates on the changes of feed quality among five cereals (barley, wheat, rye, triticale and oat) for whole crop silage. Field trials were conducted at paddy field in Yesan, Chungnam Province and the aerial parts were clipped 10 days from 15 March to 15 June. Changes of acid detergent fiber (ADF) content in relation to different cutting dates was described by a quadratic curve for 5 winter cereals crops. ADF content reached a maximum at 5 days after heading in barley cultivar 'Youngyang', 7 days in wheat 'Keumkang', 18 days in rye 'Gogu', 1 days in triticale 'Shinyoung' and 10 days in oat 'Samhan'. Neutral detergent fiber (NDF) content were linearly increased as growing after overwintering and stagnated or slightly decreased after heading. The crude protein were linearly decreased throughout the growth period of 5 whole crop cereals. Digestible dry matter (DDM) content were decreased from early stages to heading and subsequently increased as grain filling. Relative feed value (RFV) for 5 crops were decreased as growing and subsequently increased as grain filling after heading. Barley cultivar for only forage use 'Youngyang' were lower at ADF and NDF content and higher at DDM and RFV after heading than those of other cereals for forage use. So, barley for whole crop silage was a good crop with high feed quality and high proportion of spikes compared with other winter cereal crops. Wheat cultivar for grain 'Keumkang' were higher at crude protein than those of other four cereals from overwintering to maturing and were higher at DDM and RFV after heading than those of rye, triticale and oat. Rye cultivar with cold tolerant and high fresh yielding 'Gogu' were highest at ADF and NDF content and lowest at DDM content and RFV. So, rye was a crop with low quality for forage use compared to other winter cereal crops. Triticale cultivar with flourishing and high yielding 'Shinyoung' was intermediated between barley and rye, and were linearly increased at DDM yield by different cutting dates. Oat cultivar with cold tolerant and high tillering 'Samhan' were lower at ADF and NDF content and higher at crude protein before heading, but after heading, there are not especially advantages compared to barley, wheat or triticale.

Transient Elastodynamic Analysis By BEM Using DDM (DDM과 경계요쇼법을 이용한 동탄성 해석)

  • Shin, Dong-Hoon;Owatsiriwong, Adisorn;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.534-535
    • /
    • 2009
  • This paper deals with BEM analysis of transient elastodynamic problems using domain decomposition method and particular integrals. The particular method is used to approximate the acceleration term in the governing equation. The domain decomposition method is examined to consider multi-region problems. The domain of the original problem is subdivided into sub-regions, which are modeled by the particular integral BEM. The iterative coupling employing Schwarz algorithm is used for the successive update of the interface boundary conditions until convergence is achieved. The numerical results, compared with those by ABAQUS, demonstrate the validity of the present formulation.

  • PDF

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Reliability analysis of wind-excited structures using domain decomposition method and line sampling

  • Katafygiotis, L.S.;Wang, Jia
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.37-53
    • /
    • 2009
  • In this paper the problem of calculating the probability that the responses of a wind-excited structure exceed specified thresholds within a given time interval is considered. The failure domain of the problem can be expressed as a union of elementary failure domains whose boundaries are of quadratic form. The Domain Decomposition Method (DDM) is employed, after being appropriately extended, to solve this problem. The probability estimate of the overall failure domain is given by the sum of the probabilities of the elementary failure domains multiplied by a reduction factor accounting for the overlapping degree of the different elementary failure domains. The DDM is extended with the help of Line Sampling (LS), from its original presentation where the boundary of the elementary failure domains are of linear form, to the current case involving quadratic elementary failure domains. An example involving an along-wind excited steel building shows the accuracy and efficiency of the proposed methodology as compared with that obtained using standard Monte Carlo simulations (MCS).

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.

Collagen biology for bone regenerative surgery

  • Murata, Masaru
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.321-325
    • /
    • 2012
  • Collagen is widely used for regenerative therapy and pharmaceutical applications as one of the most useful scaffolds. Collagen is the most abundant protein in vertebrates and the natural substrate of various types of animal cells. Bone and dentin are mineralized tissues and almost similar in chemical components. They consist of collagen (18%), non-collagenous proteins (2%), hydroxyapatite (70%) and body fluid (10%) in weight volume. Pepsin-digested, type I collagen (atelocollagen) and heat-denatured collagen (gelatin) are basic collagenous materials for medical use. Demineralized dentin matrix (DDM) and demineralized bone matrix (DBM) belong to acid-insoluble group, and vital tooth-derived DDM is a unique dentin material including cementum and growth factors. In this review, collagen-based materials will be introduced and discussed for bone regenerative surgery.

Characterization for Blend of Siloxane Prepolymer onto Epoxy Resin (Siloxane Prepolymer의 에폭시수지 블렌드 특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Shin, Jae-Sup;Kim, Yeong-Jun
    • Elastomers and Composites
    • /
    • v.32 no.3
    • /
    • pp.179-185
    • /
    • 1997
  • In solution and melting state, SiOD prepolymer was prepared by cured excess DDM with epoxy-terminated siloxane oligomers to control phase separation when DGEBA was blended with PDMS. DGEBA/SiOD prepolymer was also cured at $150^{\circ}C$ for 3hrs. Mechanical and thermal properties of the cured prepolymer specimen were investigated. DGEBA/SiOD60 specimen blended SiOD prepolymer had the best flexural strength, modulus and impact strength. To show crack-formation procedure to morphology, DGEBA/DDM neat specimen was flowed homogeneously in direction of crack energy, whereas DGEBA/SiOD$(30{\sim}60)$ specimen showed heterogeneously dispersed particles and scattered domain of crack energy, but DGEBA/SiOT specimen showed homogeneous phase.

  • PDF

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

An Implementation of Simulation based on HLA/RTI using Agent Technique (에이전트 기술을 사용한 HLA/RTI 기반 시뮬레이션의 구현)

  • 김용주;김영찬
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.179-184
    • /
    • 2003
  • HLA-RTI is middleware for the distribute simulation that developed in the US Department of Defense. This provides fast accomplishment speed and reliability than distribute simulation Middleware by transfer. However, DDM(Data Distribution Management) service is used as data filtering technology in the existing HLA-RTI. As for this, the problem that network traffic increases in data exchange between the mobility simulation objects is generated. it proposes applying agent technology to the mobility simulation object in order to solve these problems in this paper in this. And this paper applies that to practical simulation and analyzes performance between each data filtering technology with comparison.

  • PDF

The Development Direction for Advanced EMU (차세대 전동차 개발방향)

  • Kim Gil-Dong;Oh Seh-Chan;Lee Hanmin;Park Sung-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1039-1044
    • /
    • 2005
  • The Objective of advanced EMU Project is development of new technologies, that can resolve the system problems of conventional EMU, for reducing vehicle maintenance, improving passenger's service using IT and providing environmental friendly. As a concept of advanced EMU, We will develop the DDM with individual driving wheel for reducing of maintenance cost and full-electric braking system without pneumatic braking, and a new bogie for loadable DDM, and pre-diagnosis system which informs possible system error, and decentralization of vehicle control. To improve transport reliability, and energy storage system for saving energy, and fallen passenger detection system for improving passenger's safety at the platform.

  • PDF