본 연구에서는 물체의 복사 에너지를 수신하여 영상화하는 밀리미터파 수동 이미징 시스템을 설계하였다. 수동 이미징 시스템은 수신하는 열 잡음 신호가 매우 미약하기 때문에 렌즈와 수신기 전단이 매우 중요하다. 수신된 신호를 집중시키기 위한 렌즈는 광학전달함수를 적용하여 설계하였다. 수동 이미징 시스템에서는 열 잡음을 고감도 및 광대역으로 수신할 필요가 있기에, 이미징에 필요한 증폭기의 목표성능을 최대이득40dB, 최대잡음지수 5dB로 하였으며, 대역폭을 10GHz로 하였다. 증폭된 밀리미터파를 직류 출력하는 검파회로 설계에는 SBD MSS-20 141B10D 다이오드를 사용했다.
본 논문에서는 $0.12{\mu}m$ 게이트 전극을 가진 metamorphic InAIAs/InGaAs high electron-mobility transistors (mHEMT)를 이용하여 제작된 60 GHz push-push 발진기의 특성을 고찰하였다. 전극 길이가 $0.12{\mu}m$ 인 mHEMT는 700 mA/mm의 최대 전류, 600 mS/mm의 최대 전달정수, 170 GHz $f_T$, 그리고 300 GHz 이상의 $f_{MAX}$ 등 우수한 특성을 나타내었다. 두 개의 $6{\times}50{\mu}m$ 크기를 가지는 mHEMT 를 이용하여 제작된 발진기는 59.5 GHz 에서 6.3 dBm의 출력 전력과 -35 dBc 이상의 기저 주파수 억압도를 나타내었다. 페이즈 노이즈 (phase noise)는 발진 주파수의 1 MHz 오프셋에서 -81.2 dBc/Hz 의 특성을 나타내었다. 본 연구 결과는 60 GHz 대역에서 mHEMT를 이용하여 제작된 push-push 발진기로는 최대 출력을 나타낸 결과이며, 이 연구 결과는 상용화와 저가격에 InP HEMT 보다 유리한 mHEMT를 이용하여 고출력 발진기 특성을 얻을 수 있음을 보여준다.
1.2 더블 폴리 부유게이트 트랜지스터로 구성된 아날로그 메모리가 CMOS 표준공정에서 제작되었다. 효율적인 프로그래밍을 위해 일반적인 아날로그 메모리에서 사용되었던 불필요한 초기 소거 동작을 제거하였으며 프로그래밍과 읽기의 경로를 동일하게 가져감으로서 읽기 동작 시에 발생하는 증폭기의 DC 오프셋 문제를 근본적으로 제거하였다. 어레이의 구성에서 특정 셀을 주변의 다른 셀들로부터 격리시키는 패스 트랜지스터 대신에 Vmid라는 별도의 전압을 사용하였다. 실험 결과 아날로그 메모리가 디지털 메모리의 6비트에 해당하는 정밀도를 보였으며 프로그래밍 시에 선택되지 않은 주변의 셀들에 간섭 효과가 없는 것으로 확인되었다. 마지막으로, 아날로그 어레이를 구성하는 셀은 특이한 모양의 인젝터 구조를 가지고 있으며, 이것은 아날로그 메모리가 특별한 공정 없이도 트랜지스터의 breakdown 전압 아래에서 프로그래밍 되도록 하였다.
This paper dealt with the frequency component analysis of acoustic signals produced by corona and series-arc discharges as a diagnostic technique for closed-switchboards. Corona and series-arc discharge were simulated by a needle-plane electrode and an arc generator specified in UL1699, respectively. Acoustic signal was detected by a wideband acoustic sensor with a frequency bandwidth of 4 Hz~100 kHz (-3 dB). We analyzed frequency spectrums of the acoustic signals detected in various discharge conditions. The results showed that acoustic signals mainly exist in ranges from 30 kHz to 60 kHz. From the experimental results, an acoustic detection system which consists of a constant current power supply (CCP), a low noise amplifier (LNA) and a band pass filter was designed and fabricated. The CCP separates the signal component from the DC source of acoustic sensor, and the LNA has a gain of 40 dB in ranges of 280 Hz~320 kHz. The high and the low cut-off frequency are 30 kHz and 60 kHz, respectively. We could detect corona and series-arc discharges without any interference by the acoustic detection system, and the best frequency is considered in ranges of 30 kHz~60 kHz.
벼멸구의 식이행동을 전기적인 측정 방법을 통하여 관찰하였으며 이들을 각각의 특성에 따라 분류하였고, 그결과 type P, S, SB, O, X, Ph 등 6가지로 나누어 볼 수 있었다. Type P는 벼멸구가 식물에체 처음 접근하여 기주를 탐색할 때 볼 수 있었으며, 구침을 조직내에 찔어 넣거나조직내에서 이동할 때에는 type S를 관찰 할 수 있었다. 또한 매우 규칙적인 S패턴은 체관부에 구침을 찔어 넣을때만 볼 수 있어 type SB로 따로이 분류하였다. X와 Ph패턴은 각각 물관부와 채관부에서 흡즙할 때 나타나는 것을 확인하였으며, type O는 기타 다른 조직내에 구침이 있을 때 이러한 전기적 패턴을 보여 주었다. 이러한 각각의 전기적 패턴을 확인하기 위하여 원하는 패턴이 나타날 때에 식흔이 있는 벼의 조직을 잘라서 현미경으로 관찰하였으며, 각각의 타입별로 벼멸구 배설물을 측정하였다.
We have developed control electronics to operate flux-locked loop (FLL), and analog signal filters to process FLL outputs for 64-channel Double Relaxation Oscillation SQUID (DROS) magnetocardiography (MCG) system. Control electronics consisting of a preamplifier, an integrator, and a feedback, is compact and low-cost due to larger swing voltage and flux-to-voltage transfer coefficients of DROS than those of dc SQUIDs. Analog signal filter (ASF) serially chained with a high-pass filter having a cut-off frequency of 0.1 Hz, an amplifier having a gain of 100, a low-pass filter of 100 Hz, and a notch filter of 60 Hz makes FLL output suitable for MCG. The noise of a preamplifier in FLL control electronics is $7\;nV/{\surd}\;Hz$ at 1 Hz, $1.5\;nV/{\surd}\;Hz$ at 100 Hz that contributes $6\;fT/{\surd}\;Hz$ at 1 Hz, $1.3\;fT/{\surd}\;Hz$ at 100 Hz in readout electronics, and the noise of ASF electronics is $150\;{\mu}V/{\surd}\;Hz$ equivalent to $0.13\;fT/{\surd}\;Hz$ within the range of $1{\sim}100\;Hz$. When DROSs are connected to readout electronics inside a magnetically shielded room, the noise of 64-channel DROS system is $10\;fT/{\surd}\;Hz$ at 1 Hz, $5\;fT/{\surd}\;Hz$ at 100 Hz on the average, low enough to measure human MCG.
본 연구의 목적은 방사선 펄스의 고안정 계측회로 및 분석시스템 개발에 있다. 제안한 시스템은 중성자 및 감마선 검출회로, 프로그래머블 고전압 공급장치 및 DSP로 구성된다. 프로그래머블 고전압 공급장치는 입력전압 5V에서 150V까지 조정할 수 있도록 하였으며 직렬의 전압 안정화 회로를 부가하여 일정한 전압이 유지되도록 함으로써 고전압 공급장치의 전압 변동율은 1.63%이하로 얻을 수 있었다. 방사선 검출회로는 능동성 적분기, 폴-제로 회로, 증폭도 60dB의 3단 증폭회로로 구성되며, 주파순 대역은 37 Hz~300 kHz이다. 또한 파고분포의 계수는 방사선 펄스의 분석에 중요한 자료로 본 연구에서는 A/D 컨버터(12bit 100㎱) 및 고속의 DSP(TMS320C31-60)을 이용하여 PC-기반으로 구현되는 파고분석 시스템을 구성하였다.
1.2㎛ 더블 폴리 부유게이트 트랜지스터로 구성된 아날로그 메모리가 CMOS 표준공정에서 제작되었다. 효율적인 프로그래밍을 위해 일반적인 아날로그 메모리에서 사용되었던 불필요한 초기 소거 동작을 제거하였으며 프로그래밍과 읽기의 경로를 동일하게 가져감으로서 읽기 동작 시에 발생하는 증폭기의 DC offset 문제를 근본적으로 제거하였다. 어레이의 구성에서 특정 셀을 주변의 다른 셀들로부터 격리시키는 패스 트랜지스터 대신에 Vmid라는 별도의 전압을 사용하였다. 실험 결과 아날로그 메모리가 디지털 메모리의 6비트에 해당하는 정밀도를 보였으며 프로그래밍 시에 선택되지 않은 주변의 셀들에 간섭 효과가 없는 것으로 확인되었다. 마지막으로, 아날로그 어레이를 구성하는 셀은 특이한 모양의 인젝터 구조를 가지고 있으며, 이것은 아날로그 메모리가 특별한 공정 없이도 트랜지스터의 breakdown 전압 아래에서 프로그래밍 되도록 하였다.
As the global warming threats to humanity, renewable energy is considered the key solution to overcome the climate change. In this circumstance, distributed PV systems are being expanded significantly its market share in the renewable energy industry. The performance of inverter is the most important component at PV system and numerous researches are focusing on it. In order to improve the inverter, PV simulator is an essential device to experiment under various load and conditions. This paper proposes the PV Power-Hardware-In-Loop simulator (PHILS) with real-time processing converted electrical and mathematical models to improve computation speed. Single-diode PV model is used in MATLAB/SIMULINK for the PV PHILS to boosting computation speed and dynamic model accuracy. In addition, control algorithms for sub-components such as DC amplifier, measurement device and several interface functions are implemented in the model. The proposed PV PHILS is validated by means of experiments with commercial PV module parameters.
Ka 대역 위성통신 및 BWLL 시스템용 3단 저잡음 증폭기가 MMIC 기술로 설계 및 제작되었다. MMIC 저잡음 증폭기는 잡음지수와 높은 이득 그리고 진폭 선형성을 만족하기 위하여 2단의 single-ended 형태의 증폭단과 1단의 balanced 형태의 증폭단으로 구성되었다. 낮은 잡음지수와 높은 이득을 얻기 위하여 0.15$\mu\textrm{m}$ pHEMT 소자가 사용되었다. CD에서 80 GHz 대역까지의 안정도 확보를 위하여 직렬 및 병렬 궤환 회로와 λ/4 short 라인이 삽입되었다. 설계된 MMIC 저잡음 증폭기의 크기는 3.1mm $\times$2.4mm(7.44mm$^2$)이다. 제작된 MMIC 저잡음 증폭기의 wafer 상에서의 측정 결과, 22~ 30 GHz 주파수 대역에서 잡음지수는 2.0 dB이하이고 이득은 26dB이상으로 설계 결과와 일치하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.