• 제목/요약/키워드: DC-shift

Search Result 251, Processing Time 0.027 seconds

Design of ZVS DC / DC Converter with Phase-Shifting Topology (영전압스위칭의 위상천이방식 DC/DC 컨버터 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1177-1182
    • /
    • 2018
  • We designed a 500W zero voltage switching DC / DC converter operating at 100Mhz with phase shift topology using UCC3895 driver. The dead time of the UCC3895 driver is designed so that the leading and lagging leg of the full bridge can be driven separately. So, the dead time can be given between the two legs separately. The dead time, which is an asymmetrical relationship between the two legs, enables the implementation of zero voltage switching. This paper proposed a negative feedback circuit design method for stable output voltage. The maximum efficiency of the prototype was 95.5% at $500{\Omega}$ load.

A Study on Frequency Shift of Piezo Microstrip Antennas (피에조 마이크로스트립 안테나의 주파수 이동에 관한 연구)

  • Kang, Hyunil;Joung, Yeun-Ho;Hwang, Hyun Suk;Lim, Yun-Sik;Yu, Young Sik;Song, Woochang;Lee, Jongsung
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.22-25
    • /
    • 2012
  • In this paper, we proposed a method of the resonant frequency shift of a microstrip patch antenna using $LiNbO_3$, PVDF and FR-4 substrates. We designed and analyzed from these parametars optimized using Ensemble V 7.0 of the simulation tool. We observed the resonant frequency by DC appled electric field in a microstrip patch antenna. When $LiNbO_3$ substrate were applied from -300 to 300 V/mm, we obtained the resonant frequency shift of maximum 29 MHz. The microstrip patch antenna with PVDF (poly vinylidene fluoride) substrate, we obtained the resonant frequency shift of maximum 17 MHz at frequency 6 GHz. but when Epoxy FR-4 substrates used, the resonant frequency does not changed. This results showed the resonant frequency shift without physical strains in a microstrip patch antenna.

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

A New DC-DC Converter Topology For High-Efficiency Electric Vehicle Rapid Chargers (전기전동차 급속충전기 고효율화를 위한 새로운 DC-DC 컨버터 토폴로지)

  • Kim, Jin-Hak;Lee, Woo-Seok;Choi, Seung-Won;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • LLC resonant converters or phase-shift full-bridge converters have been widely used as DC - DC converters for rapid charging of electric vehicles (EVs). However, these converters present critical disadvantages, including a large circulating current, which can hinder efficiency and miniaturization in EV battery charger applications. In this paper, a new DC - DC converter topology is proposed for EV rapid chargers. The proposed converter can operate at high frequency despite a high rated power capacity of over 20kW, and the problem of circulating current can be minimized during the entire battery charging time. Owing to these advantages, the proposed converter can achieve a high conversion efficiency of over 97% for EV rapid charger applications. The performance of the proposed converter is verified with 20kW prototypes in this study.

A Zero Voltage Switching Phase Shift Full Bridge Converter with Separated Primary Winding

  • Kim, Young-Do;Kim, Chong-Eun;Cho, Kyu-Min;Park, Ki-Bum;Cho, In-Ho;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.379-381
    • /
    • 2008
  • Generally additional leakage inductance and two clamp diodes are adopted into the conventional phase shift full bridge (PSFB) converter for reducing the voltage stress of secondary rectifier diodes and extending the range of zero voltage switching (ZVS) operation. However, since additional leakage inductance carries the ac current similar to the primary one, the core and copper loss oriented from additional leakage inductance can be high enough to decrease the whole efficiency of DC/DC converter. Therefore, in this paper, a new ZVS phase shift full bridge converter with separated primary winding (SPW) is proposed. Proposed converter makes the transformer and additional leakage inductor with one ferrite core. Using this method, leakage inductance is controlled by the winding ratio of separated primary winding. Moreover, by manufacturing the both magnetic components with one core, size and core loss can be reduced and it turns out the improvement of efficiency and power density of DC/DC converter. The operational principle of proposed converter is analyzed and verified by the 1.2kW prototype.

  • PDF

The Design of an Improved ZCZVS Resonant Type Converter by Digital I-PD Phase-shift Controller (디지털 I-PD 위상 쉬프트 제어기를 가진 개선된 영전류.영전압 스위칭 공진형 컨버터의 설계)

  • Kim, Young-Moon;Ahn, In-Mo;Kim, Hae-Jae;Shin, Dong-Ryul;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.66-70
    • /
    • 2000
  • This paper deal with a design and a constant output power control of Zero Current Zero Voltage Switching(ZCZVS) resonant type DC-DC converter by a digital I-PD phase shift controller. When the DC-DC converter for a high density and a high effect control is operated in high speed switching, the switching loss and switching stress of the switching devices are increased. So, the ZCZVS method, which has the phase shift control with the digital I-PD controller, must be use in order to reduce its. And the constant output power voltage that controlled by the digital I-PD controller tracks a reference without steady state error in variable input voltage. The validity of control strategy that proposed is verified experimental results by the Digital Signal Processor TMS320C32.

  • PDF

Reactive Power and Soft-Switching Capability Analysis of Dual-Active-Bridge DC-DC Converters with Dual-Phase-Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.18-30
    • /
    • 2015
  • This paper focuses on a systematical and in-depth analysis of the reactive power and soft-switching regions of Dual Active Bridge (DAB) converters with dual-phase-shift (DPS) control to achieve high efficiency in a wide operating range. The key features of the DPS operating modes are characterized and verified by analytical calculation and experimental tests. The mathematical expressions of the reactive power are derived and the reductions of the reactive power are illustrated with respect to a wide range of output power and voltage conversion ratios. The ZVS soft-switching boundary of the DPS is presented and one more leg with ZVS capability is achieved compared with the CPS control. With the selection of the optimal operating mode, the optimal phase-shift pair is determined by performance indices, which include the minimum peak or rms inductor current. All of the theoretical analysis and optimizations are verified by experimental tests. The experimental results with the DPS demonstrate the efficiency improvement for different load conditions and voltage conversion ratios.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.

Comparison and Analysis of Control Strategies to Improve Bidirectional Isolated Charger Efficiency for Electric Vehicles (전기자동차 충전기용 양방향 절연형 DC-DC 컨버터 효율 개선 제어기법 비교 분석)

  • Ahn, Hyo-Min;Cho, Yong-Ki;Woo, Dong-Gyun;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.151-152
    • /
    • 2013
  • 본 논문에서는 DAB(Dual Active Bridge)로 구성된 양방향 절연형 DC-DC 컨버터의 제어 기법인 SPS(Single Phase Shift)와 DPS(Dual Phase Shift)를 양방향 OBC(On-Board Charger)의 충전 및 방전모드에 적용한다. 그리고 각 모드의 입출력 조건에 따라 전력 반도체 소자에서 발생되는 손실을 PSIM 시뮬레이션과 수학적 분석을 통해 예측하고, 이를 비교 분석한다.

  • PDF