• 제목/요약/키워드: DC-motor

Search Result 1,933, Processing Time 0.034 seconds

Characteristics of Open-Loop Current Sensor with Temperature Compensation Circuit (온도보상회로를 부착한 개방형 전류측정기의 특성)

  • Ku, Myung-Hwan;Park, Ju-Gyeong;Cha, Guee-Soo;Kim, Dong-Hui;Choi, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8306-8313
    • /
    • 2015
  • Open-type current sensors have been commonly used for DC motor controller, AC variable controller and Uninterruptible Power Supply. Recently they have begun to be used more widely, as the growth of renewable energy and smart-grid in power system. Considering most of the open-type current sensors are imported, developing the core technology needed to produce open-type current sensors is required. This paper describes the development and test results of open-type current sensors. Design of C type magnetic core, selection and test of a Hall sensor, design of current source circuit and signal conditioning circuit are described. 100A class DIP(Dual In-line Package) type and SMD(Surface Mount Devide) type open-type current sensors was made and tested. Test results show that the developed open-type current sensor satisfies the accuracy requirement of 2% and linearity requirement of 2% at 100 A of DC and AC current of 60Hz. Temperature compensation was carried out by using a temperature compensation circuit with NTC(Negative Temperature Coefficient) thermistor and the effect of the temperature compensation are described.

Development and Tree-Dimensional Kinematic Analysis of the Dual Chamber-based Drinking Aid for Stroke Patients: A Prospective Pilot Study (이중 체임버 구조가 내장된 뇌졸중 환자용 컵의 개발과 3차원 동작분석을 통한 운동 형상학적 유용성 검증: 전향적 예비연구)

  • Heo, Seo Yoon;Kim, Kyeong-Mi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.180-190
    • /
    • 2016
  • This prospective pilot clinical trial mainly focuses on developing dual chamber-based assistive cups which are suitable for stroke patients who have struggled with using there affected arms. It is unable to provide motor and sensory enhancement during drinking activities and to examine the feasibility of the devices for acute phase, even for chronic stroke survivors. The stroke patients(n=16; male=8, female=8), in this trial, were provided informed consent to the investigation. All the individuals participated in 1 weeks of training for using cups, randomized over dedicated dual chamber based assistive cups(DC) or placebo-cups(PC) training. All the participants were assessed within 1 week before and after the intervention period. 3-dimensional motion analysis, sEMG(surface electromyography) and 3-dimensional trunk movement were assessed. The result presents DC data group compared with PC showed, they needed lesser ROM(range of motion) at the phase of drinking in shoulder movements and lesser muscle activities on upper trapezius, deltoid middle fiber and triceps brachii muscles, lesser tilting movement on front and back side in drinking phase, the differences were statistically significant(p<.05). Dual chamber-based assistive cup could be one of efficient way to complete ADLs(activities of daily living), especially drinking tasks, and these evidence data may contribute to determine certain rehabilitation policies related to assistive devise usage.

Development of On-line Grading System Using Two Surface Images of Dried Oak Mushrooms (양면영상을 이용한 온라인 검표고 등급판정 시스템 개발)

  • Hwang, H.;Lee, C. H.;Kim, S. C.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • As a basic research for the development of the automatic grading and sorting system for dried oak mushrooms, the device to acquire both cap and gill side images of mushroom has been developed and neural network based side recognition and quality grading has been proposed via inputting both side images. 20 quality grades have been selected considering the requirement of grade classifications imposed by the mushroom company. Developed DC motor driven‘V’type reversing device for the image acquisition of both side images of mushroom showed more than 95% success. Most error was caused by very small size mushrooms with a radius of around 1cm. However, it required a further research to reduce the reversing time. Grading and side recognition were performed via inputting normalized size factors and average gray levels of $8{\times}8$ grids converted from the raw images of both surfaces to the multi-layer back propagation(BP) network. Accuracy of the grading showed about 88.5% and the total grading time including reversing operation was around 2 seconds.

  • PDF

Nonlinear Adaptive PID Controller based on a Cell-mediated Immune Response and a Gradient Descent Learning (세포성 면역 반응과 경사감소학습에 의한 비선형 적응 PID 제어기)

  • Park Jin-Hyun;Lee Tae-Hwan;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They we difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

Development of ECO Driving Meter System for Diesel Locomotives (디젤기관차 연료사용량 측정장치 개발)

  • Park, Tae-Gi;Lee, Eul-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2357-2364
    • /
    • 2011
  • Diesel locomotive operates the generator with the power from the diesel engine, and it consists of the typical serial-hybrid system which operates the train wheels by converting its generated electric energy into the torque of DC (or AC) motor. However, the technology of locomotives is only focused on trains' controlling power generation mechanism. Hence, it is a current issue that the efficiency of its engine and its generator is relatively lower than that of auto vehicles'. Particularly, since there are no proper equipment to measure the amount of fuel which is essentially necessary for the efficient use of fuel, it is not easy to confirm the instant amount of fuel use as well as the exact average fuel consumption per an hour. Due to those difficulties, it is urgent to develop the device that measures the fuel consumption. Plus, this use of the developed measuring device allows the various and useful analysis relating to the fuel consumption, and this could lead to establishing the efficient driving pattern regarding to fuel saving. This device consists of two flux (fuel level) measuring censors, MCU for calculating the measured values, the information recorder for saving measured values, and the display device for indicating the fuel amount consumed during driving.

  • PDF

Neural Network-Based System Identification and Controller Synthesis for an Industrial Sewing Machine

  • Kim, Il-Hwan;Stanley Fok;Kingsley Fregene;Lee, Dong-Hoon;Oh, Tae-Seok;David W. L. Wang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.83-91
    • /
    • 2004
  • The purpose of this paper is to obtain an accurate nonlinear system model to test various control schemes for a motion control system that requires high speed, robustness and accuracy. An industrial sewing machine equipped with a Brushless DC motor is considered. It is modeled by a neural network that is configured as an output-error dynamical system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a 2 degree-of-freedom PID controller to compensate the effects of disturbance without degrading tracking performance has been de-signed. In this experiment, it is not preferable for safety reasons to tune the controller online on the actual machinery. Experimental results confirm that the model is a good approximation of sewing machine dynamics and that the proposed control methodology is effective.

Design and Contact Force Control of a Flip Chip Mounting Head system

  • Kim, Kyoung-Jun;Shim, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1060-1065
    • /
    • 2003
  • This paper contributes to development of a new chip mounting head system for flip chip. Recently, the LDM(Linear DC Motor) has been widely used, because it has particular merits than the rotary type motors. In this paper, we proposed a macro/micro positioning system for force control of a chip mounting system. In the proposed macro/micro system, the macro actuator provide the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and PCB surface. In order to prove the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed chip mounting head with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions of various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

  • PDF

Multiplierless Digital PID Controller Using FPGA

  • Chivapreecha, Sorawat;Ronnarongrit, Narison;Yimman, Surapan;Pradabpet, Chusit;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.758-761
    • /
    • 2004
  • This paper proposes a design and implementation of multiplierless digital PID (Proportional-Integral-Derivative) controller using FPGA (Field Programmable Gate Array) for controlling the speed of DC motor in digital system. The multiplierless PID structure is based on Distributed Arithmetic (DA). The DA is an efficient way to compute an inner product using partial products, each can be obtained by using look-up table. The PID controller is designed using MATLAB program to generate a set of coefficients associated with a desired controller characteristics. The controller coefficients are then included in VHDL (Very high speed integrated circuit Hardware Description Language) that implements the PID controller onto FPGA. MATLAB program is used to activate the PID controller, calculate and plot the time response of the control system. In addition, the hardware implementation uses VHDL and synthesis using FLEX10K Altera FPGA as target technology and use MAX+plusII program for overall development. Results in design are shown the speed performance and used area of FPGA. Finally, the experimental results can be shown when compared with the simulation results from MATLAB.

  • PDF

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.

Loss analysis for the novel half bridge inverter with load free-wheeling mode (부하 환류모드를 제공하는 새로운 반 브리지 인버터의 손실해석)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.216-219
    • /
    • 2003
  • The resonant inverter is widely used for induction heating, electronic ballast and supersonic motor driving circuit. In the meantime, control techniques of PWM, PFM etc.. are mainly applied to control the output power of the resonant inverter. But, in the case of using the half bridge resonant inverter, it is difficult to control the output power by PWM, because its main circuit does not provide the load free-wheeling mode. Therefore, PAM or PFM was usually applied to control output power of half bridge resonant inverter. However, PAM needs a variable DC voltage source, which makes the system structure more complex. On the other hand, in case of PFM, efficiency is declined by operation with poor power factor. This paper Proposed the novel half bridge resonant inverter which can provide the load free-wheeling mode. Also its analysis results for PWM operation with unity fundamental power factor are Presented and compared with other resonant inverters using PWM and PFM.

  • PDF