• Title/Summary/Keyword: DC-link

Search Result 1,020, Processing Time 0.027 seconds

Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems (Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법)

  • Jung, Hong-Ju;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

PFC Bridge Converter for Voltage-controlled Adjustable-speed PMBLDCM Drive

  • Singh, Sanjeev;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.215-225
    • /
    • 2011
  • In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage.

RIO-DC Buffer Design for Core Routers in DiffServ Assured Services

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.539-544
    • /
    • 2011
  • In this paper, a parameter optimization method of RIO-DC (RED (Random Early Detection) with In and Out-De-Coupled Queues) scheme for Assured Service (AS) in Differentiated Services (DiffServ) is proposed. In order to optimize QoS (Quality of Service) performance of the RIO-DC policy for AS in terms of maximum tolerable latency, link utilization, fairness, etc., we should design router nodes with proper RIO-DC operating parameter values. Therefore, we propose a RIO-DC configuration method and the admission control criterion, considering the allocated bandwidth to each subclass and the corresponding buffer size, to increase throughput for In-profile traffic and link utilization. Simulation results show that RIO-DC with the proposed parameter values guarantees QoS performance comparable with the RIO scheme and it improves fairness between AS flows remarkably.

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

A Novel SLLC Series Resonant Converter for The Boost DC/DC Converter (SLLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Kim, Eun-Soo;Kang, Sung-In;Chung, Bong-Geun;Cha, In-Su;Yoon, Jeong-Phil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Recently, the high frequency link boost DC/DC converter has been used widely for PCS (Power Conditioning System) because of the requirements of small size and low cost. However, the high frequency link boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have some problems like high conduction losses and high surge voltage due to high circulating current and leakage inductance, respectively. To improve these problems, a novel secondary LLC (called SLLC) series resonant converter is proposed in this paper and its theoretical analysis, its operating waveforms, simulation and experimental results for a boost DC/DC converter using SLLC series resonant topology verifies the proposed topology. 800W experimental prototype is tested.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

An Analysis on the Effectiveness of Harmonics Reduction for Variable Frequency Drive by Reactors (리액터에 의한 가변주파수 구동장치의 고조파저감효과 분석)

  • Kim, Deok-Ki;Yoon, Kyoung-Kuk;Kim, Hee-Moon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.770-777
    • /
    • 2015
  • Recently, due to the rapid development of Power Electronics, the usage of Non Linear Load variable frequency drivers (VFDs) is increasing in the electric propulsion vessels and offshore plants. And harmonics which is generated by the variable frequency drives is an important issue should be solved. Ac line reactors and dc link reactors are widely used in variable frequency drives to improve the drive performance such as reducing input current harmonics, elevating input power factor, and protecting the drives from surges, etc. The effectiveness of both types of reactors in reducing input harmonics is affected by the loading of the drives and the system source impedance. And it considered that inductance of DC link reactors should be about 1.7 times of AC line reactors for same effect. The rules to evaluate the needs and effectiveness using ac line or dc link reactors are proposed for practical appications. In this paper, a simulation is performed to investigate of such factors using software PSIM.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter (계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어)

  • Park, Min-Gi;Lee, Joon-Min;Hong, Ju-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

Utility-Interactive Four-Switch Three-Phase Soft-Switching Inverter with Single Resonant DC-Link Snubber and Boost Chopper

  • Ahmed, Tarek;Nagai, Shinichiro;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • In this paper, a novel proposal for a utility-interactive three-phase soft commutation sinewave PWM power conditioner with an auxiliary active resonant DC-link snubber is developed for fuel cell and solar power generation systems. The prototype of this power conditioner consists of a PWM boost chopper cascaded three-phase power conditioner, a single two-switch auxiliary resonant DC-link snubber with two electrolytic capacitors incorporated into one leg of a three-phase V-connection inverter and a three-phase AC power source. The proposed cost-effective utility-interactive power conditioner implements a unique design and control system with a high-frequency soft switching sinewave PWM scheme for all system switches. The operating performance of the 10 kW experimental setup including waveform quality, EMI/RFI noises and actual efficiency characteristics of the proposed power conditioner are demonstrated on the basis of the measured data.