• 제목/요약/키워드: DC voltage optimization

검색결과 70건 처리시간 0.035초

가스방전관(GDT)을 적용한 서지보호장치 회로의 DC 동작전압 최적조건 고찰 (Optimization of DC Operating Voltage for GDT-Adopted SPD)

  • 최종민;전태현
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.92-98
    • /
    • 2012
  • It is made compulsory to install SPD for the purpose of protecting electric and electronic devices when an abnormal voltage such as lightning occurs to power line using power frequency of 60Hz. Recently, the high speed communication technology utilizing power line is receiving attention again as a communication technology for smart grid. The SPD influences the performances of power line communication when using SPD and power line communication system together. In order to improve the performance of power line communication, a proposed scheme for series connection of gas discharge tube to ZnO varistor was presented. This paper measured the impacts of series connection of GDT to SPD using ZnO varistor on the limit voltage of Class III SPD. This paper also presented the DC operating voltage of GDT which satisfies the limit voltage of power line communication system and SPD simultaneously.

계통 연계형 태양광발전시스템을 위한 POS MPPT 운전특성 최적화 기법 (Optimization technique of POS MPPT operational characteristics for grid-connected PV generation system)

  • 박상수;김상용;장성재;김경훈;서효룡;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1064_1065
    • /
    • 2009
  • PV (Photovoltaic) power generation system has been widely studied as a clean and renewable power source. Tracking the MPP (maximum power point) of a PV array is usually an essential part of a PV system. This paper describes POS (Photovoltaic Output Sensorless) MPPT method and optimization technique of its operational characteristics for grid-connected PV generation system. A DC-DC converter has been used to step-up the PV voltage and DC-AC converter has been used for connecting the system to the grid. Optimization technique has been implemented to optimize the current and voltage controller gain parameters and duty ratio increment of DC-DC converter. Simulation results reveal that the proposed control has better response.

  • PDF

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

Harmonic Optimization Techniques in Multi-Level Voltage-Source Inverter with Unequal DC Sources

  • Aghdam, M. Ghasem Hosseini;Fathi, S. Hamid;Gharehpetian, Gevorg B.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.171-180
    • /
    • 2008
  • One of the major problems in electric power quality is the harmonic contents. There are several methods of indicating the quantity of harmonic contents. The most widely used measure is the total harmonic distortion (THD). Various switching techniques have been used in static converters to reduce the output harmonic content. This paper presents and compares the two harmonic optimization techniques, known as optimal minimization of the total harmonic distortion (OMTHD) technique and optimized harmonic stepped-waveform (OHSW) technique used in multi-level inverters with unequal dc sources. Both techniques are very effective and efficient for improving the quality of the inverter output voltage. First, we describe briefly the cascaded H-bridge multi-level inverter structure. Then, we present the switching algorithm for the inverter based on OHSW and OMTHD techniques. Finally, the results obtained for the two techniques are analyzed and compared. The results verify the effectiveness of the both techniques in multi-level voltage-source inverter with non-equal dc sources, clarifying the advantages of each technique.

전력 제어 기능을 가진 DC-DC 내장형 LED Driver IC 설계 (DC-DC integrated LED Driver IC design with power control function)

  • 이승우;이중기;김선엽
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.702-708
    • /
    • 2020
  • 최근 LED 디스플레이 시스템의 대형화에 따라서 시스템의 효과적인 전력 제어 방법에 대한 연구가 진행 중이다. 그 중에서 본 논문에서는 BLU(Backlight unit)시스템의 채널 별 LED 특성차에 기인한 전력 손실을 최소화하기 위한 전력 제어 방법을 제안하였다. 제안된 전력 제어 기능을 갖는 LED 드라이버 IC는 전 채널의 정전류 동작이 가능한 최소 headroom 전압을 검출 후 DC-DC 컨버터 출력을 선형적으로 제어하여, 불필요한 추가 전압에 따른 전력 소모를 최소화 할 수 있도록 하였다. 또한 채널 별 전압 감지 비교기와 기준 전압 생성 회로가 필요하지 않아서 집적 회로 구현시 칩사이즈 감소 및 안정화 측면에서 큰 장점을 갖는다. 제안된 전력 제어 기능 동작을 검증하기 위해서, DC-DC 내장형 전력제어 LED driver IC를 Cadence 및 Synopsys사의 Design Tool을 사용하여 설계하였으며, Magnachip 0.35um 5V/40V CMOS 공정을 사용하여 제작하였다. 제작된 IC실험을 통해서 제안된 전력 제어 방법이 BLU시스템의 최소 필요 전압을 정상적으로 제어함을 확인하였다.

전기자동차용 DC-DC 컨버터 최적설계 (Optimization Design and Implementation of DC-DC Converter(LDC) for Electric Vehicle)

  • 권용효;김승모;김표수;김말수;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.107-108
    • /
    • 2012
  • This paper presents design and implementation of the LDC(1.8 kW DC-DC Converter for Electric Vehicles). For Implementation of the LDC, the adapted topology is ZVS(Zero Voltage Switching) PSFB(Phase Shift Full Bridge) with Digital Control is adopted. Also, for the purpose of stable operation of the LDC in vehicle with variable electrical load condition, Continuous Voltage and Current Limit Control scheme based on PI controller are developed. According to real-car test mode, the prototype of proposed the LDC is verified with performance and stability. Thus, optimizing design and implement of the LDC are discussed, and experimental results are presented.

  • PDF

Design Methodology for Optimal Phase-Shift Modulation of Non-Inverting Buck-Boost Converters

  • Shi, Bingqing;Zhao, Zhengming;Li, Kai;Feng, Gaohui;Ji, Shiqi;Zhou, Jiayue
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1108-1121
    • /
    • 2019
  • The non-inverting buck-boost converter (NIBB) is a step-up and step-down DC-DC converter suitable for wide-input-voltage-range applications. However, when the input voltage is close to the output voltage, the NIBB needs to operate in the buck-boost mode, causing a significant efficiency reduction since all four switches operates in the PWM mode. Considering both the current stress limitation and the efficiency optimization, a novel design methodology for the optimal phase-shift modulation of a NIBB in the buck-boost mode is proposed in this paper. Since the four switches in the NIBB form two bridges, the shifted phase between the two bridges can serve as an extra degree of freedom for performance optimization. With general phase-shift modulation, the analytic current expressions for every duty ratio, shifted phase and input voltage are derived. Then with the two key factors in the NIBB, the converter efficiency and the switch current stress, taken into account, an objective function with constraints is derived. By optimizing the derived objective function over the full input voltage range, an offline design methodology for the optimal modulation scheme is proposed for efficiency optimization on the premise of current stress limitation. Finally, the designed optimal modulation scheme is implemented on a DSPs and the design methodology is verified with experimental results on a 300V-1.5kW NIBB prototype.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

MVDC 시스템의 적용을 위한 초전도 한류기의 설계 최적화 시뮬레이션 (Design Optimization Simulation of Superconducting Fault Current Limiter for Application to MVDC System)

  • 이석주
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.41-49
    • /
    • 2024
  • 본 논문에서 중전압 직류 시스템(MVDC)의 적용을 위한 초전도 한류기(SFCL)의 설계 최적화를 위한 시뮬레이션 결과를 검증한다. 신재생 에너지의 증가와 계통 연계의 관점에 있어서, 기존의 송전망이나 배전망이 아닌 신재생 에너지망의 에너지 밸런싱을 위한 중전압 시스템이 연구 개발 실증 중에 있다. 특히 DC 배전망의 고장 전류는 빠른 시간 내에 큰 고장 전류를 차단해야 하기 때문에 초전도 한류기와 같은 전류 제한 시스템은 직류 차단기의 동작에 많은 이점이 있다. 이러한 초전도 한류기의 개발에 있어 시제작 및 평가 전에 유한 요소 해석(FEM)과 장시간의 설계 과정을 거쳐야 한다. 이러한 설계과정에서의 시간을 줄이기 위해 차원축소모델(ROM)을 활용하여 설계 결과를 학습하고 유한요소 해석 설계 결과와 동일한 결과를 검증함으로 기존 공학 모델의 제작 및 양산 등의 설계 시뮬레이션을 최적화하는 것 적용할 수 있다.

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.