• 제목/요약/키워드: DC railway substation

검색결과 43건 처리시간 0.025초

순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링 (Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation)

  • 배창한
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

DC 급전시뮬레이션을 통한 도시철도 회생에너지 활용 분석 (Analysis of Utilizing Regenerative Energy in Railway System through a DC Power Supply Simulation)

  • 신승권;정호성;김형철;박종영
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1479-1484
    • /
    • 2014
  • This paper deals with regenerative energy in railway system which one of the largest customer in terms of load capability. Unlike the other loads of power system, loads of railway systems change in time and space. It has a characteristic amount of generating regenerative energy by frequent starting and braking in railway system. Therefore, it is expected higher utilization in railway system than the other systems. The purpose of DC power supply simulation is analyzing backed energy, regenerative energy by each railway vehicle and substation. In this paper, regenerative energy utilization are analyzed using DC power supply simulation and it is performed changing major influence on the design such as the number of installing absorber, internal resistance value, no-load voltage value at substation or operating parameters at regenerative energy utilization. After simulating, results are compared and analyzed.

DC전철구간의 회생인버터시스템 개발 (Development of Regeneration Invertor System for DC Electric Railway System)

  • 김용기;김주락;한문섭;김준구;양영철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

DC전철구간의 에너지회생장치 개발 방향 (Direction for Development of Energy Regeneration Device for DC Electric Railway System)

  • 김용기;배창한;한문섭;양영철;장수진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

Development of AC/DC Hybrid Simulation for Operator Training Simulator in Railway System

  • Cho, Yoon-Sung;Lee, Hansang;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.52-59
    • /
    • 2014
  • Operator training simulator, within a training environment designed to understand the principles and behavior of the railway system with respect to operator's entries and predefined scenario, can provide a very strong benefit in facilitating operators' handling undesired operations. This simulator consists of computer system and applications, and the purpose of applications is to generate the power and voltage and analyze the AC substation and DC railway, respectively. This paper describes a novel approach to the new techniques for AC/DC hybrid simulation for the operator training simulator in the railway system. We first propose the structure the database of railway system. Then, topology processing and power flow using a linked-list method based on the proposed database, full or decoupled newton-rapshon methods are presented. Finally, the interface between the analysis for AC substation using a newton-rapshon method and the analysis for DC railway system using a time-interval power flow method is described. We have verified and tested the developed algorithm through the extensive testing for the proposed test system. To demonstrate the validity of the developed algorithm, comparative simulations between the proposed algorithm and PSS/E for the test system were conducted.

전기철도 변전소의 직류고속도차단기 동작 감소방안에 관한 연구 (A Study on the DC High Speed Circuit Breaker(HSCB) in Electric Railway Substation System)

  • 허태복;김학련;창상훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1303-1308
    • /
    • 2004
  • This paper proposes a reduction method for the mis-operation analysis of the DC High Speed Circuit Breaker(HSCB) in electric railway substation system. The analysis method is based on present condition of operation which is a method for accuracy level up. There is reason to operation of HSCB that it is mis-operation of fault detection relay(50F), operation of ground fault relay(64P), and trouble of electric car. A countermeasure is relay resetting through field test, induction of GTOCB(Gate Turn Off Thyristor Circuit Breaker), HSVCB(High Speed Vacuum Circuit Breaker), coordination with electric car. The results presented in the paper can be used as a reference for maintenance free in electric railway substation system.

  • PDF

도시철도 변전소 전력설비 실시간 모니터링 방안 도출 (Derivation of Real-time Monitoring System for Power Supply System in Metro Substation)

  • 정호성;박영;어수영
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.333-337
    • /
    • 2010
  • This paper introduces an overall system design of a real-time monitoring system that monitors condition of urban railway AC/DC transformers, disconnecting switches, circuit breakers, regulators, and GIS (gas insulated switchgear). For effective diagnosis of urban railway facilities we developed optimized sensors and application technology. The proposed system is combined with wireless technology, implementing remote real-time monitoring of urban railway facilities. The derived real-time monitoring system for power facilities in urban railway substations will be applied not only to diagnose low voltage DC (direct current) railways but also to diagnose design of small power facilities of skyscrapers and apartments.

선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정 (RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme)

  • 배창한;김영국;박찬경;김용기;한문섭
    • 한국철도학회논문집
    • /
    • 제19권3호
    • /
    • pp.314-323
    • /
    • 2016
  • 직류 전철변전소의 가선전압은 전동차들의 회생제동 및 역행가속패턴에 따라 급격히 상승 또는 하강하는 특성을 갖는다. 가선전압 순시 변동폭을 최소로 유지함으로써, 전철변전소와 전동차들의 에너지 효율을 개선시키기 위한 다양한 연구들이 이루어지고 있다. 본 논문은 직류전철 변전소의 가선전압의 급격한 변동특성을 모델링하고 선형인공 신경망 알고리즘을 이용한 가선전압 회로모델의 파라메터 추정 방법을 제안하며, 최소자승법을 이용한 추정방법과의 비교를 통해 이 방법의 타당성을 입증한다. 가선전압 및 피더전류들의 누적 측정값을 사용하여 일괄처리 최소자승법으로 RC 병렬회로의 파라메터들을 추정한 결과를 제시하며, 실시간 가선전압 및 피더전류 측정값을 이용하여 오차역 전파방식으로 학습되는 선형인공신경망 기법 추정 결과를 분석한다.

직류 전기철도 에너지 절감방안 연구 (A Study on the Energy Saving Strategy in Electric Railway System)

  • 최병운;창상훈;김학련
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.676-681
    • /
    • 2005
  • The regenerative braked cars are being introduced in DC electric railway for energy saving. There has been a recent tendency for DC traction substation with regenerative inverter to increase in number. This is strongly related to the desire for effective utilization of electric power regenerated by DC electric cars and to the aim ensuring stable operation of regenerative braking system. The regenerative inverters DC power feed back from a generative car into AC power at a substation and supplies it to distribution lines. This paper suggest the result of characteristic analysis and capacity simulation. economical analysis in the regenerative inverter system.

  • PDF

직류 도시철도 변전소 수요전력 예측 (Power Demand Forecasting in the DC Urban Railway Substation)

  • 김한수;권오규
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1608-1614
    • /
    • 2014
  • Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.