• Title/Summary/Keyword: DC protection relay

Search Result 27, Processing Time 0.095 seconds

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF

Development of a Simulator and Algorithm Test for Selective-breaking Integrated Protective Relay for Ungrounded DC Traction Power Supply System (DC 비접지 급전계통 선택차단형 통합보호계전기 시뮬레이터 개발 및 알고리즘 테스트)

  • An, Tae-Pung;Yun, Jun-Seok;Jung, Tae-Young;Kim, In-Woong;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.899-904
    • /
    • 2012
  • In recent years, a lot of research was done for earth fault protection in ungrounded dc power supply system. As a result, selective-breaking integrated protective relaying system is developed in progress and is currently field-testing are planned. Algorithm on a PC using PSCAD done a lot of testing before performing field tests, but in this study developed algorithms and functions needed to determine whether they were operating normally. Therefore, simulated system is similar to the actual situation was required and made. selective-breaking algorithm verification and validation was performed with simulator.

The Influence of a FIR Filter on Distance Relaying Algorithm (DC제거용 FIR필터가 거리계전기에 미치는 영향 분석)

  • Oh, Ye-Jun;Jang, Jun;Park, Jin-Kyu;Kim, Su-Hwan;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2195_2196
    • /
    • 2009
  • DC-offset is a very important subject in power systems protection, since DC-offset causes mal-operation of the distance relay. This paper deals with the influence of a FIR filter used for removing the DC-offset upon the convergence characteristics of distance relaying algorithm based on Fourier Transform.

  • PDF

A Protection Scheme for DC Railway Systems (DC철도 급전계통 보호시스템 구성)

  • Kwon, Y.J.;Kang, S.H.;Oh, K.H.;Lee, J.K.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • A DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases all at once. So the type of ${\Delta}I$ relay(50F) was developed using the different characteristics between the load starting current and the fault current. As for the load starting current, the time constant of load current at each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. Secondly, to compose a protection scheme for DC railway systems is presented in this paper.

  • PDF

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

Advanced DC Offset Removal Filter of High-order Configuration (고차 구성의 개선된 직류 옵셋 제거 필터)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Fault currents are expressed as a combination of harmonic components and exponentially decaying DC offset components, during the occurrence of fault in power system. The DC offset components are included, when the voltage phase angle of fault inception is closer to $0^{\circ}$ or $180^{\circ}$. The digital protection relay should be detected quickly and accurately during the faults, despite of the distortions of relaying signal by these components. It is very important to implement the robust protection algorithm, that is not affected by DC offset and harmonic components, because most relaying algorithms extract the fundamental frequency component from distorted relaying signal. So, In order to high performance in relaying, advanced DC offset removal filter is required. In this paper, a new DC offset removal filter, which is no need to preset a time constant of power system and accurately estimate the DC offset components with one cycle of data, is proposed, and compared with the other filter. In order to verify performance of the filter, we used collecting the current signals after synchronous machine modeling by ATPDraw5.7p4 software. The results of simulation, the proposed DC offset removal filter do not need any prior information, the phase delay and gain error were not occurred.

A Digital Current Differential Transformer Protecion Algorithm Minimizing the Effect of DC-offset (DC-offset 영향을 최소화한 변압기보호 디지털 비율차동 계전알고리즘 구현)

  • Kwon, Young-Jin;Kang, Sang-Hee;Lee, Seeng-Jae;Jung, Sung-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • This paper presents a digital current differential protection algorithm for a transformer in power system. This algorithm uses an FIR filter to improve the performance of the relay. This paper presents a practical method setting the operating slope of the relay and reduce ct mismatch. A series of EMTP simulation results have shown effectiveness of the algorithm under various type of transformers and conditions.

  • PDF

Analysis of the response of a distance relay considering the errors of CT and CCVT (CT와 CCVT의 오차를 고려한 거리 계전기의 응동 분석)

  • Kang, Yong-Cheol;Zhang, Tai-Ying;Choi, Jae-Sun;Kang, Hae-Gweon;Kim, Kwang-Moo;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.12-15
    • /
    • 2008
  • A distance relay has been widely used for transmission line protection. The distance relay detects a fault based on the calculated impedance i.e. the ratio of the voltage to the current measured from a current transformer (CT) and a coupling capacitor voltage transformer (CCVT), respectively. When a fault occurs and a CT saturates due to the magnitude of fault current, dc component, primary time constant, and the remanent flux of the iron core, the secondary current of a CT is distorted On the other hand, non-fundamental components generated during a fault can increase the error of a CCVT, particularly when a fault distance is short. The distortion of the current and voltage can cause mal-operation or the operating time delay of a distance relay. This paper describes the response of a distance relay considering the errors of a CT and a CCVT. The results indicate that the severe distortion of a CT and a CCVT have noticeable effect to a distance relay.

  • PDF

Voltage rising simulation due to the ground fault in DC traction system (직류 급전시스템에서의 지락고장에 따른 전압상승 시뮬레이션)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Chung, Sang-Gi;Kwon, Sam-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.215-217
    • /
    • 2008
  • DC fraction system can damage human and other facilities due to the rising of rail potential. Therefore the earth fault detection relay protects system using rail potential induced in train operation and ground fault. However the conventional protection system cannot operate due to the fault resistance and might operate unwanted voltage rising due to the other substation ground fault. So this paper models DC traction system using PSCAD/EMTDC and simulates the rail potential rising. We can estimate the rail potential rising in DC traction system through the various simulation.

  • PDF

Analysis of protection relay's operation with CT saturation during the power plant's fault (발전소 근단 고장시 CT 포화에 따른 보호계전기 동작 분석)

  • Oh, S.I.;Lee, M.H.;Yoon, J.W.;Jang, S.I.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.292-294
    • /
    • 2005
  • 전력계통에 고장이 발생할 경우 dc성분이 많이 포함된 고장전류가 발생될 가능성이 높아진다. 이때, 고장이 발생 되었다가 dc성분이 소멸되면서 만들어낸 자속이 CT의 포화에 가장 큰 영향을 미치게 된다. 특히 발전소 구내에서 고장이 발생되면 dc성분이 많이 포함된 고장전류가 발생되어 CT가 포화하는 현상을 자주 볼 수 있다. 이로 인해 보호계전기에 유입되는 2차 전류가 왜곡되고 이로 인해 보호계전기가 오동작을 하게 된다. 본 논문에서는 대용량 발전소의 스위치야드 차단기 혹은 모선에서 발생한 고장으로 Unit 보호계전기가 오동작한 사례를 분석한 내용이다.

  • PDF