• Title/Summary/Keyword: DC link current

Search Result 511, Processing Time 0.023 seconds

The study on DC-link Film Capacitor in 3 Phase Inverter System for the Consideration of Frequency Response (3상 인버터 시스템에서 주파수 특성을 고려한 필름 콘덴서의 DC-link 적용 방법에 관한 연구)

  • Park, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.117-122
    • /
    • 2018
  • A large-capacity three-phase system air conditioner recently includes an inverter circuit to reduce power consumption. The inverter circuit uses a DC voltage that comes from DC-link power capacitor with the function of rectifying, which means AC voltage to DC voltage using a diode. An electrolytic capacitor is generally used to satisfy the voltage ripple and current ripple conditions of a DC-link power capacitor used for rectifying. Reducing the capacitance of the capacitor decreases the size, weight, and cost of the circuit. This paper proposes an algorithm to reduce the input ripple current by combining the minimum point estimation phase locked loop (PLL) phase control and the average voltage d axis current control technique. When this algorithm was used, the input ripple current decreased by almost 90%. The current ripple of the DC-link capacitor decreased due to the decrease in input ripple current. The capacitor capacity can be reduced but the electrolytic capacitor has a heat generation problem and life-time limitations because of its large equivalent series resistance (ESR). This paper proposes a method to select a film capacitor considering the current ripple at DC-link stage instead of an electrolytic capacitor. The capacitance was selected considering the voltage limitation, RMS (Root Mean Square) current capacity, and RMS current frequency analysis. A $1680{\mu}F$ electrolytic capacitor can be reduced to a $20{\mu}F$ film capacitor, which has the benefit of size, weight and cost. These results were verified by motor operation.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverter at Low Modulation Index

  • C.S. Ma;Kim, T.J.;D.W. Kang;D.S. Hyun
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM (DPWM) to balance the DC-link voltage of three-level neutral-point-clamped (NPC) inverter at low modulation index. It introduces new DPWM methods in multi-level inverter and one of them is used for balancing the DC-link voltage. The current flowing in the neutral point of the DC-link causes the fluctuation of the DC-link voltage of the NPC inverter. The proposed DPWM method changes the path and duration time of the neutral point current, which makes the overall fluctuation of the DC-link voltage zero during a sampling time of the reference voltage vector. Therefore, by using the proposed strategy, the voltage of the DC-link can be balanced fairly well and the voltage ripple of the DC-link is also reduced significantly. Moreover, comparing with conventional methods which have to perform the complicated calculation, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by the experiment.

Start-Up Current Control Method for Three-Phase PWM Rectifiers with a Low Initial DC-Link Voltage

  • Gu, Bon-Gwan;Choi, Jun-Hyuk;Jung, In-Soung
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.587-594
    • /
    • 2012
  • When a PWM rectifier has a low DC-link voltage during startup, the output voltage vector cannot be high enough to regulate the input current. This lack of a PWM rectifier output voltage vector can cause an unregulated inrush current when the rectifier operation starts. This paper presents a PWM rectifier start-up current control algorithm for when it starts operation with a lower DC-link voltage than unloaded condition case. To avoid the unregulated inrush current caused by a lack of DC-link voltage, the proposed control scheme regulates the one phase current with one switch chopping and it generates the current command considering the uncontrolled current magnitude information, which is calculated in advance. Simulation and experiment results support the validity of the proposed method.

Comparative Analysis of Pulse Width Modulation Methods for Improving the Lifetime of DC-link Capacitors of NPC Inverters (NPC 인버터의 DC-link 커패시터 수명 향상을 위한 전압 변조 방법 비교 평가)

  • Choi, Jae-Heon;Choi, Ui-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2022
  • Capacitor is one of the reliability-critical components in power converters. The lifetime of the capacitor decreases as the operating temperature increases, and power losses caused by capacitor current are the main cause of the capacitor temperature increase. Therefore, various studies are being conducted to improve the lifetime of the capacitor by reducing the current of DC-link capacitors. In this study, pulse width modulation methods proposed for improving the lifetime of DC-link capacitors of the three-level NPC inverter are comparatively analyzed. The lifetime evaluation of the DC-link capacitor under different modulation methods is performed at component level first and then system level by considering all capacitors by applying Monte Carlo simulation. Furthermore, their effects on the efficiency and THD of the output current are also considered.

A Study on the DC-Link Miniaturization and the Reduction of Output Current Distortion Rate by Reducing the Effect of 120 Hz Ripple Voltage on Photovoltaic Systems (태양광 발전 시스템의 120Hz 리플 전압 영향 감소를 통한 DC-Link 소형화와 출력 전류 왜곡률 감소에 관한 연구)

  • Song, Min-Geun;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.342-348
    • /
    • 2021
  • The PV module of solar power systems requires maximum power point tracking (MPPT) technique because the power-voltage and current-voltage characteristics vary depending on the surrounding environment. In addition, the 120 Hz ripple voltage on the DC-Link is caused by the imbalance of the system voltage and current. The effect of this 120 Hz ripple voltage reduces the efficiency of the power generation system by increasing the output current distortion rate. Increasing the capacity of DC-Link can reduce the 120 Hz ripple voltage, but this method is inefficient in price and size. We propose a technique that detects 120 Hz ripple voltage and reduces the effect of ripple voltage without increasing the DC-Link capacity through a controller. The proposed technique was verified through simulations and experiments using a 1 kW single-phase solar power system. In addition, the proposed technique's feasibility was demonstrated by reducing the distortion rate of the output current.

Analysis of Output Characteristics for the Resonant DC Link Inverter Using PWM Inverter Modulation Methods (인버터 PWM 방식을 이용한 공진형 직류 링크 인버터의 출력 특성 해석)

  • 김윤호;윤병도;이병순
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.615-624
    • /
    • 1992
  • For the operation of the resonant DC link inverters, only limited number of modulation techniques such as the delta modulation and instantaneous current control techniques have been suggested. However, these modulation techniques have some limitations in practical operation. In this paper, the application of conventional inverter modulation techniques is suggested for the control of the resonant DC link inverter. The harmonic analysis results are presented. The results show that these modulation techniques offer good output characteristics similar to conventional inverter PWM techniques for the operation of the resonant DC link inverter. This implies that not only the delta modulation technique and instantaneous current control techniques but also various other modulation techniques can be applied to the operation of the resonant DC link inverter. This also indicates that open loop control as well as closed loop control can be used for the operation of the resonant inverter. The resonant DC link inverter with various modulation strategies is implemented using V-40 microprocessors.

  • PDF

A Simple Current Ripple Reduction Method for B4 Inverters

  • Lee, Dong-Myung;Park, Jae-Bum;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1062-1069
    • /
    • 2013
  • This paper proposes a simple current compensation method to improve the control performance of B4 inverters. Four-switch inverters so called B4 inverters employ only four switches. They have a split dc-link and one phase of three-phase motors is connected to the center-tap of split dc-link capacitors in B4 inverters. The voltage ripples in the center tap of the dc-link generate unbalanced three-phase voltages causing current ripples. To solve this problem, this paper presents a simple compensation method that adjusts switching times considering dc-link voltage ripples. The validity of the proposed method is verified by simulations and experiments carried out with a 1 HP induction machine.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

DC Link Currents in Frequency Domain for Three-Phase AC/DC/AC PWM Converters

  • Park Young-Wook;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.169-173
    • /
    • 2001
  • In this paper, dc link ripple currents for three-phase ac/dc/ac PWM converters are ana lysed in a frequency domain. The expression of the harmonic currents is developed by using switching functions and exponential Fourier series expansion. The dc link ripple currents with regard to power factor and modulation index are investigated. In addition, the effect of the displacement angle between the switching periods of line-side converters and load-side inverters on the dc link ripple current is studied. The result of the dc link current analysis is helpful in specifying the dc link capacitor size and its lifetime estimation.

  • PDF

Adaptive DC-link Voltage Control for Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.764-777
    • /
    • 2014
  • This study analyzes the mathematical relationship between DC-link voltage and system parameters for shunt active power filters (APFs). Analysis and mathematical deduction are used to determine the required minimum DC-link voltage for APF. A novel adaptive DC-link voltage controller for the three-phase four-wire shunt APF is then proposed. In this controller, the DC-link voltage reference value will be maintained at the required minimum voltage level. Therefore, power consumption and switching loss will effectively decrease. The DC-link voltage can also adaptively yield different DC-link voltage levels based on different harmonic currents and grid voltage levels and thus avoid the effects of harmonic current and grid voltage fluctuation on compensation performance. Finally, representative simulation and experimental results in a three-phase four-wire center-split shunt APF are presented to verify the validity and effectiveness of the minimum DC-link voltage design and the proposed adaptive DC-link voltage controller.