• Title/Summary/Keyword: DC line voltage

Search Result 409, Processing Time 0.027 seconds

Thyristor전력변환기-전동기계의 무효전력의 처리에 관한 연구

  • 유철로
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 1982
  • As a method for improving the power factor and the waveform of ac line current drawn by ac to dc converters, converters of pulse-width control type with forced commutation circuits have been developed in recent years. However, these converters have rather complex commutation circuits which contain auxiliary thyristors in addition to the main thyristors, and their performance is not satisfactory. This paper proposes a new pulse-width controlled ac to dc converter, and analyses its commutation mechanism and its input and output characteristics. The proposed converter circuit consists of a usual thyristor bridge circuit with series diodes to which reactors and diodes are added. This circuit dose not contain auxiliary thyristors, and in this sense it is simpler than the previous converter circuits of pulse-width control type. Since the main thyristors of the converter can be forcedly turned off several times in a half cycle of source voltage, a pulse-width modulation control is possible in order to improve the current waveform as well as the power factor on ac line side. As to dc output side it is shown that the adjustable range of output voltage is wide and the voltage regulation is good due to a rapid reversal of voltage across the commutating capacitors by LC resonance during commutation period. It is also shown that the regenerative operation of the converter is possible.

  • PDF

Novel Single-Stage Power Factor Correction AC/DC Converter with Low DC Link Voltage using New Magnetic Feedback Technique (새로운 마그네틱 피드백 기법을 이용하여 낮은 링크 전압을 갖는 새로운 단일 전력단 역률 개선 AC/DC 컨버터)

  • Choi E. S.;Yoon H. K.;Kim C. E.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.528-532
    • /
    • 2004
  • Novel single-stage power factor correction AC/DC converter with low DC link voltage using new magnetic feedback technique is proposed in this paper. The Proposed converter has high power factor, tight output voltage regulation and low link capacitor voltage less than 450V for all the load range through the universal input line. This converter has also no dead-zone in the input current, which is seen in the conventional converter using the previous magnetic feedback technique. In this paper, the analysis of operations and features of the proposed converter is provided, and the experimental results of 90W-prototype shows the low harmonic distortions satisfied with EN 61000-3-2 Class D, high power factor and low link voltage less than 450V.

  • PDF

Regenerative Inverter System for DC Traction Substation with Voltage Drop Compensation Mode (전압강하 보상모드를 갖는 직류 지하철용 회생인버터 시스템)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Cho, Kee-Hyun;Won, Chung-Yuen;Kim, Yong-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2008
  • In this paper, the regenerative inverter system with voltage drop compensation mode is proposed. When the main rectifier is broken, the DC traction can not be supplied the power from the utility. Actually, the reserve rectifier is mounted in the substation to prevent this accident. In this paper, the voltage drop compensation mode is added to the regenerative inverter system in order to substitute the reserve rectifier. The proposed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system. We demonstrated the effectiveness of the proposed control algorithm by using computer simulation.

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

2-stage 3-phase PWM AC/DC Converter for Unity Power Factor Drive of Synchronous Generator (단위역률동작을 위한 동기 발전기 여자 시스템용 2단 3상 PWM AC/DC 컨버터)

  • Lee, Sang-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.187-192
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system In the case of diode rectifier system of phase controlled converter, AC/DC converter has low power factor and some low order harmonics in the line current. In this paper, two-stage three-phase PWM AC/DC converter is studied to solve these problems, The proposed method is verified by the computer simulations and experimental results in prototype generation system.

  • PDF

Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection (입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정)

  • 이강주;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a novel on-line dc capacitance estimation method for the three-phase PWM converter is proposed. At no load, input current at a low frequency is injected, which causes dc voltage ripple. With the at voltage and current ripple components of the dc side, the capacitance can be calculated. Experimental result shows that the estimation error is less than 2%.

Study on DC Swich Control in HVDC C&P System (HVDC C&P 시스템 내 DC Switch 제어에 관한 연구)

  • Son, Bong Kyun
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.133-134
    • /
    • 2013
  • 현재 LS산전과 한국전력공사의 공동 개발을 통하여 60MW급 ${\pm}80kV$ 전류형 HVDC(High Voltage Direct Current) Transmission System 내 알고리즘 국산화 개발을 진행하고 있다. 제어 알고리즘 여러 레벨(AC Yard Control, Master Control, Pole Control, Phase Control)에서 운전하기 전 여러 고려사항 중 DC Yard 내 DC Switch의 투입/개방의 조건이 있다. 본 논문에서는 이러한 DC Line에 DC Switch의 상태를 효율적으로 제어하는 방법에 대해 소개하고자 한다.

  • PDF

A Study on the Firing Angle at the Mode Conversion to Improve the Output Characteristics of the Double Converter for Urban Railway DC Power Supply (도시철도 직류급전용 더블컨버터의 출력특성 향상을 위한 모드 변환 시 점호각 제어 연구)

  • Seo, Seung-Sam;Han, Sung-Woo;Byun, Gi-Sig
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • This paper suggest away to maintain constant power through trolley wire by transferring increased line voltage to the AC main line while changing the mode from Converter(Forward) to Inverter(Reverse) when the line voltage is increased due to regenerative power when the train stops, This paper suggests a Double Converter DC substation that can create regenerative power when the train stops reusable. We also proposed using a simulation tool, the optimal Thyrister firing angle that can minimize the undershoot and overshoot that occurs when transferring the mode from Converter to Inverter for quality improvement of DC voltage in the Double Converter in the DC substation from the Busan Urban Subway.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF