• Title/Summary/Keyword: DC feedback

Search Result 369, Processing Time 0.024 seconds

A Study on the Step-up DC-DC Converter for PV System Application Under Variable Input Voltage Condition (가변 입력 전압 조건하에서 태양광 시스템 적용을 위한 승압형 DC-DC 컨버터 연구)

  • Ju-Yeop Lee;Se-Cheon Oh;Il-Hyeong Jo;Ye-Jin Kim;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.677-684
    • /
    • 2024
  • In this paper, the design method of a step-up DC-DC converter based on PWM control was studied for solar power system application. The operating principle of the switching mode step-up type DC-DC converter was analyzed and the basic design method was studied. For photovoltaic system application, an output voltage feedback control algorithm based on PWM control was developed to enable the converter's output voltage to follow the target voltage under variable input conditions. As a procedure to verify the effectiveness of the proposed algorithm, a prototype of a step-up DC-DC converter with a single feedback output voltage was designed and made by boosting the input voltage DC 10V to DC 30V. In experiments with prototypes, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage. In the performance evaluation test, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage by showing an error rate within 1 [%] of the reference voltage.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

Analysis and Implementation of Single-Stage AC/DC Converter with Magnetic Energy Feedback Technique for Power Factor Correction (역률개선을 위한 자기에너지 궤환기법의 단일전력단 AC/DC 컨버터의 해석 및 구현)

  • 문건우;오관일;전영수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.148-155
    • /
    • 1998
  • A novel single-switch, single-stage, AC/DC forward converter with transformer magnetic energy feedback technique for power factor correction is proposed. The operational principle and analysis of the proposed converter is presented. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor.

A New Negative Impedance Stabilizing Control Technique for Switching Power Supplies with Constant Power Loads

  • Emadi A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.276-280
    • /
    • 2001
  • In this paper, an approach to the design of negative impedance stabilizing controllers for PWM DC/DC converters that are used in DC switching. power supplies with constant power loads is presented. The control approach is based on the feedback linearization technique. Because of the negative impedance destabilizing characteristics of constant power loads, classical linear control methods have stability limitations around the operating points. However, the proposed stabilizing technique improves large-signal stability and dynamic responses. The proposed controllers are simulated and their responses under different operations are studied. Stability of the control technique is also verified using the second theorem of Lyapunov.

  • PDF

An Asymmetrical Half-Bridge Dc-to-Dc Converter Employing Charge Control (전하 제어를 적용한 비대칭 하프 브리지 직류-직류 컨버터)

  • Lim, Won-Seok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1186
    • /
    • 2003
  • In this paper, a charge controlled asymmetrical half-bridge (ASHB) dc-to-dc converter is presented. For ASHB do-to-dc converter, the peak current-mode control was found to be problematic primarily due to the oscillatory behavior of the current feedback signal. To resolve this problem, a charge control method is applied to the ASHB do-to-dc converter. A 50W prototype ASHB dc-to-dc converter was built, and successfully tested.

  • PDF

A Study on the Compensation of the Feedback Circuit in the Buck-boost DC-DC Converter (승강압형 DC - DC 콘버어터에 있어서 제어회로의 보상에 관한 연구)

  • Kim, Hee-Jun;Lee, In-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.111-117
    • /
    • 1990
  • This paper investigated the effect of the zero on the right-half-plane on stability in the buck-boost DC-DC converter which is one type of the switching regulator, and the stability region in connection with the output current was shown by evaluating the feed-back gain. From the result it is shown that the stability decreases by the existence of the zero on the right-half-plane. We carried out a compensation by a pole in the feedback circuit and obtained the available stability region in relation to the gain band-width product. These results proved to be the validity by experiment.

  • PDF

Feedback Linearization Control of Grid-Interactive PWM Converters with LCL Filters

  • Kim, Dong-Eok;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.288-299
    • /
    • 2009
  • This paper proposes a feedback linearization control scheme of AC/DC PWM converters with LCL input filters using no damping resisters. Feedback linearization techniques use a transformation from nonlinear system models into equivalent linear models in a simpler form. The feedback linearization scheme in this work has cascade structures unlike usual feedback linearization, therefore it has an advantage that it is possible to limit the capacitor current to a certain level. The performance of the proposed controller is validated with simulation and experimental results.

Design and Analysis of a Switching State Feedback Controller to Reduce the Measurement Error Effect for a Chain of Integrators System under AC and DC Noise (AC와 DC 노이즈가 있는 적분기 시스템에서 측정에러의 영향을 감소시키는 스위칭 상태 궤환 제어기의 설계 및 분석)

  • Oh, Sang-Young;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, we propose a controller capable of reducing the effect of measurement errors under AC and DC noise. Typically, the control system measures data through a sensor. If sensor noise is included in a controller via the feedback channel, the signal is distorted and the entire system cannot work normally. Therefore, some appropriate action to counter the measurement error effect is essential in the controller design. Our controller is equipped with a gain-scaling factor and a compensator to reduce the effect of measurement error in the feedback signal. Also, we use a switching control strategy to enhance the performance of the controller regarding convergence speed. Our proposed controller can therefore effectively reduce the AC and DC noise of the sensor. We analyze the proposed controller by Laplace transform technique and our control method is verified via MATLAB simulation.

Suppression of Output Distortion in a Gyroscope using Fiber Amplifier/Source by Tracking of Optimum Modulation Amplitude

  • Park, Hee-Gap
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • We propose and demonstrate a new scheme for suppression of output distortion in an open-loop gyroscope employing an erbium-doped fiber amplifier/source (FAS). In addition to the main modulation for the rotation rate measurement, a small auxiliary modulation at a different frequency is used to extract an error signal, which is necessary for keeping the quasi-dc component of the feedback signal power at a constant level for varying rotation rate. By active tracking of the optimum modulation condition using this two-frequency modulation scheme, we obtain stable gyro output with suppressed distortion as well as stable FAS characteristics. We also calculate the distortion in the gyro response due to the feedback effect, from which we estimate the FAS gyro output distortion due to the residual ac feedback effect when the dc feedback effect is removed by the proposed scheme. The measured residual deviation agrees reasonably with the estimation.

A Transimpedance Amplifier Employing a New DC Offset Cancellation Method for WCDMA/LTE Applications

  • Lee, Cheongmin;Kwon, Kuduck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.825-831
    • /
    • 2016
  • In this paper, a transimpedance amplifier based on a new DC offset cancellation (DCOC) method is proposed for WCDMA/LTE applications. The proposed method applies a sample and hold mechanism to the conventional DCOC method with a DC feedback loop. It prevents the removal of information around the DC, so it avoids signal-to-noise ratio degradation. It also reduces area and power consumption. It was designed in a $0.13{\mu}m$ deep n-well CMOS technology and drew a maximum current of 1.58 mA from a 1.2 V supply voltage. It showed a transimpedance gain of $80dB{\Omega}$, an input-referred noise current lower than 0.9 pA/${\surd}$Hz, an out-of-band input-referred 3rd-order intercept point more than 9.5 dBm, and an output DC offset lower than 10 mV. Its area is $0.46mm{\times}0.48mm$.