• 제목/요약/키워드: DC bus

검색결과 271건 처리시간 0.043초

A Study on High Current Rectifier Systems with Mitigated Time-Varying Magnetic Field Generation

  • 김창우;서용석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.232-233
    • /
    • 2010
  • This paper investigates occupational exposure to time-varying magnetic field generation in high power rectifier systems. Two different kinds of high power rectifier systems of 25kA are modeled and analyzed. The performance is compared and evaluated on the basis of exposure guidelines from ICNIRP. In order to focus on the qualitative effect of rectifier operation, the mechanical structure of current carrying conductors is simplified as infinite long bus-bar model and low frequency harmonic contents up to 65kHz are considered. Thyristor rectifier generates a significant amount of low frequency magnetic field harmonic contents both at ac and dc side of rectifier infringing the limit from ICNIRP. The multilevel rectifier-IGCT type has almost negligible field generation from ac input side and smaller harmonic contents in dc load side complying with ICNIRP guideline. This remarkable advantage of multilevel rectifier-IGCT type can lead to very simple site layout design for installation and cost-effective compliance to guideline of occupational exposure against magnetic field.

  • PDF

PSCAD/EMTDC를 이용한 계통연계형 풍력발전시스템 모델링 (Modeling of Grid-connected Wind Energy Conversion System Using PSCAD/EMTDC)

  • 김슬기;김응상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-322
    • /
    • 2002
  • The paper presents an electrical model of a grid-connected wind energy conversion system (WECS) with a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and AC-DC-AC conversion scheme for simulating dynamic behaviors and performance responding to varying wind speed input. The electric output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage of WECS terminal bus at a specific level. Aerodynamic models are used to incorporate the power characteristics to wind speed. The modeling and simulation of the WECS are realized on PSCAD/EMTDC environment.

  • PDF

전력계통 안정도 향상을 위한 STATCOM 안정화 장치 설계 (Design of STATCOM Stabiliser for Improving Power System Stability)

  • 이석오;정영민;문경준;황기현;박준호;이정관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.149-151
    • /
    • 2001
  • This paper proposes the design of STATCOM(static synchronous compensator) stabilizer for improving power system stability using fuzzy logic controller(FLC). The STATCOM DC voltage regulator contributes negative damping to the power system as the installation of STATCOM DC voltage regulator. STATCOM stabiliser is superimposed on the AC voltage regulator to compensate the negative damping effect. To evaluate usefulness of the proposed method, we perform the nonlinear simulation on a single-machine infinite bus system. As results of the simulations, the proposed method shows better control performance than PI controller in terms of damping effects.

  • PDF

Improved Active Power Filter Performance Based on an Indirect Current Control Technique

  • Adel, Mohamed;Zaid, Sherif;Mahgoub, Osama
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.931-937
    • /
    • 2011
  • This paper presents a method for the performance improvement of a shunt active power filter (SAPF) using the indirect current control (ICC) scheme. Compared to the conventional direct current control (DCC) scheme, the ICC gives better performance with a lower number of sensors. A simplified and efficient control algorithm using a low cost Intel 80C196KC microcontroller is implemented using only two current sensors for the source current and one voltage sensor for the DC-link voltage of the SAPF circuit. The objective is to eliminate harmonics and to compensate the reactive power produced by non-linear loads such as an uncontrolled rectifier feeding an inductive load. The APF is realized using a three phase voltage source inverter (VSI) with a dc bus capacitor. Experimental results are presented to prove the better performance of the ICC method over the DCC one.

접속행열을 이용한 전력계통 입상학적 가관측성 해석 (Topological Observability Analysis Using Incidence Matrix in Power Systems)

  • Seog-Joo Kim;Young-Hyun Moon
    • 대한전기학회논문지
    • /
    • 제36권11호
    • /
    • pp.769-776
    • /
    • 1987
  • This paper deals with the topological observability analysis and the development of an observable island identification algorithm for state estimation in power systems, by using the incidence matrix and bus voltage grouping. An analogy of the DC power flow method to the DC circuit analysis is introduced, and all the relationships between power flows and phase angles are replaced by the corresponding current-voltage relation. As a result, a set of topological measurement equation expressed in the form of the incidince matrix is derived for the topological analysis, and the observability test is carried out by examining the rand of the measuremint matrix. The integer Gauss elimination method is introduced in the determination of matrix rand, so that the proposed observability test yields a precise observability criterion without any nearly-zero pivot problem encountered in the conventional algorithm. Also, an observable island identification algorithm reduced its computational time in comparision with the conventional algorithms. The proposed algorithms have been tested for sample systems, and their practicability has verified.

계통연계형 가변속 풍력발전방식의 PSCAD/EMTDC 모의 및 해석 (PSCAD/EMTDC BASED MODELING AND ANALYSIS OF A GRID-CONNECTED VARIABLE SPEED WIND ENERGY CONVERSION SCHEME)

  • 김슬기;김응상
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.413-419
    • /
    • 2003
  • The paper presents a simulation model and analysis of a grid-connected variable speed wind energy conversion scheme (VSWECS) using the PSCAD/EMTDC software. The modeled system uses a variable speed drive, a fixed pitch angle, a synchronous generator as a wind generator and an AC-DC-AC conversion scheme, which facilitates the wind generation to efficiently operate under varying wind speed while connected to the distribution network. The power output of the WECS is controlled by the AC-DC-AC conversion scheme, the objective of which is to capture the maximum active power under varying wind conditions and to keep the voltage magnitude of the terminal bus at a specific level. Aerodynamic models are applied for a wind turbine model. An simulation analysis of the scheme in terms of its responding to wind variations is also presented.

전력설비의 신속한 상정사고 선택 앨고리즘 (Fast Contingency Ranking Algorithm of Power Equipment)

  • 박규홍;정재길
    • 조명전기설비학회논문지
    • /
    • 제12권1호
    • /
    • pp.20-25
    • /
    • 1998
  • 본 논문은 전력설비의 신속한 상정사고 선택을 위한 앨고리즘을 제시한다. 이 방법은 DC법에 의한 선로와 모선사이의 감도계수인 GSDF(Generation Shigt Distribution Factor)를 이용하여 계산되는 선로개방분배계수 (LODF : Line Outage Distribution Factor)를 사용하여 정상상태에서의 선로조류로부터 상정사고시의 선로조류를 계산하였다. 상정사고 선택을 신속히 하기 위하여 정상상태에서 용량대비 선로조류가 35〔%〕(154〔kV〕에서는 60〔%〕)이상의 선로만을 대상으로 하였다. 본 논문에서 제시한 앨고리즘 및 프로그램의 효율성을 입증하기 위하여 6모선 11선로 모델계통을 선정하여 적용하였다.

  • PDF

H-Bridge VSC with a T-Connected Transformer for a 3-Phase 4- Wire Voltage and Frequency Controller of an Isolated Asynchronous Generator

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.43-50
    • /
    • 2009
  • This paper deals with a novel solid state controller (NSSC) for an isolated asynchronous generator (IAG) feeding 3-phase 4-wire loads driven by constant power prime movers, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of the asynchronous generator. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 2-leg voltage source converters (CC- VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The neutral point of the load is created using aT-configuration of the transformers. The IAG system is modeled in MATLAB along with Simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of the isolated generating system consisting of NSSC and IAG driven by uncontrolled pico hydro turbine and feeding 3-phase 4-wire loads.

배터리 기반 고효율 냉동유닛용 고강압 700W급 LDC 컨버터 토폴로지 설계 및 분석 (Design and Analysis of 700W LDC with High Step-Down Ratio for High Efficiency Refrigeration Unit Based on Battery)

  • 안효민;성원용;유승희;이병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.419-420
    • /
    • 2014
  • 본 논문에서는 넓은 입력 범위와 높은 강압비를 갖는 700W급 DC-DC 컨버터의 구조에 대해 분석한다. 높은 강압비를 위해 2-stage로 구성되는 시스템에 강압을 위한 Buck 컨버터와 Bus 컨버터로 동작하는 Half-bridge LLC 공진형 컨버터 직렬 구성 방법에 따라 달리 설계된 각각의 컨버터에서 발생하는 손실과 출력전압 레귤레이션 특성에 대해 시뮬레이션 툴과 수학적 분석을 통해 분석하였다.

  • PDF

DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발 (Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid)

  • 김연우;권민호;박성열;김민국;양대기;최세완;오성진
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.