• Title/Summary/Keyword: DC Servo Motor

Search Result 288, Processing Time 0.034 seconds

Design and Control of a Wire-driven Haptic Device;HapticPen

  • Farahani, Hossein S.;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1662-1667
    • /
    • 2005
  • In this paper, analysis, design, control and prototype construction of a wearable wire-driven haptic interface called HapticPen is discussed. This device can be considered as a wire driven parallel mechanism which three wires are attached to a pen-tip. Wire tensions are provided utilizing three DC servo motors which are attached to a solid frame on the user's body. This device is designed as input as well as output device for a wearable PC. User can write letters or figures on a virtual plate in space. Pen-tip trajectory in space is calculated using motor encoders and force feedback resulting from contact between pen and virtual plate is provided for constraining the pen-tip motion onto the virtual plane that can be easily setup by arbitrary non-collinear three points in space. In this paper kinematic model, workspace analysis, application analysis, control and prototype construction of this device are presented. Preliminary experiments on handwriting in space show feasibility of the proposed device in wearable environments.

  • PDF

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

Implementation of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function (하중함수의 오토 튜닝에 의한 강인한 $H^{\infty}$ 속도제어기의 구현)

  • Kim, Dong-Wan;Nam, Jing-Lak;Hwang, Gi-Hyun;Shin, Dong-Ryul;Byun, Gi-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.142-146
    • /
    • 2000
  • In this paper, we are applied the Genetic Algorithm(GA) to design of the robust $H^{\infty}$ speed controller by auto-tuning of the weighting function. GA is used to design of the weighting functions in the robust $H^{\infty}$ controller. To evaluate the performances of the proposed robust $H^{\infty}$ controller, we make an experiment on $H^{\infty}$ speed controller of an actual DC servo- motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

Optimal Design of Scaling Factor Tuning of Fuzzy Logic Controller Using Genetic Algorithm (유전알고리즘을 이용한 이득요소 동조 퍼지 제어기 최적설계)

  • Hwang, Yong-Won;Oh, Jin-Soo;Park, Kun-Hwa;Hong, Young-Jun;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.897-899
    • /
    • 1999
  • This paper presents a scaling factor tuning method to improve the performance of fuzzy logic controller. Tuning rules and reasoning are utilized off-line to determine the scaling factors based on absolute value of the error and its difference. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a dc-servo motor control system. The performance of this control system is demonstrated higher than a conventional fuzzy logic controller(FLC).

  • PDF

Implementation of Profibus-FMS Network for Real-Time Closed-Loop Control System (실시간 폐루프 제어 시스템을 위한 Profibus-FMS 네트워크의 구현)

  • Lee, Kyung-Chang;Kim, Kee-Woong;Kim, Hee-Hyun;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.911-917
    • /
    • 2000
  • As many sensors and actuators are used in various automated systems, the application of network to real-time distributed control system is gaining acceptance in many industries. In order to take advantages of networking, however, the network should be carefully designed to satisfy real-time distributed control. This paper presents an implementation method of closed-loop control using Profibus-FMS. In order to implement a closed-loop control system, we used industrial computers with Profibus-FMS network cards and a DC servo motor. Through various experiments, the step response of the control system with network was compared with the reference response without network.

  • PDF

Design of fuzzy logic controller based on adaptive variable structure controller (적응 가변구조 개념을 이용한 퍼지 제어기의 설계)

  • 박귀태;이기상;박태홍;배상욱;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.382-386
    • /
    • 1992
  • In this paper, the author proposed FLVSC(Fuzzy Logic Variable Structure Controller), of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC - noise rejection capability etc. The computer simulations have been carried out for a DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

  • PDF

Construction of the expanded I-PD control system by Neural network with two hidden layers (2개의 은닉층을 가진 신경망에 의한 확대 I-PD제어계의 구성)

  • 강동원;김대성;하홍곤;고태언
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.256-261
    • /
    • 1999
  • Many control techniques have been proposed in order to improve the control performance of discrete-time domain control system. In the position control system using a DC servo motor as control system, the response-characteristic of system is controlled by the I-PD controller. In the I-PD longer if gains of I-PD controller are unsuitable. In this paper, therefore, a expanded I-PD control system is constructed by inserting a pre-compensator at out terminal of I-PD controller. It is implemented by neural network with two hidden layers. From the result of computer simulation in the proposed control algorithm, its usefulness is verified.

  • PDF

Design of PID Type servo controller using Neural networks and it′s Implementation (신경회로망을 이용한 이득 자동조정 서보제어기 설계 및 구현)

  • 이상욱;김한실
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.229-229
    • /
    • 2000
  • Conventional gain-tuning methods such as Ziegler-Nickels methods, have many disadvantages that optimal control ler gain should be tuned manually. In this paper, modified PID controllers which include self-tuning characteristics are proposed. Proposed controllers automatically tune the PID gains in on-1ine using neural networks. A new learning scheme was proposed for improving learning speed in neural networks and satisfying the real time condition. In this paper, using a nonlinear mapping capability of neural networks, we derive a tuning method of PID controller based on a Back propagation(BP)method of multilayered neural networks. Simulated and experimental results show that the proposed method can give the appropriate parameters of PID controller when it is implemented to DC Motor.

  • PDF

Compensation of Error Signal using a Neural Network (신경망을 이용한 오차 신호 보상)

  • Park, Jin-Woo;Lee, Soo-Sung;Ha, Hong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.572-574
    • /
    • 1998
  • This paper describes design method of control system with a pre-compensator using a neural network to compensate a error signal between a reference' signal and system response. The neural network which is used here is the mixed structure and it's algorithm is a back propagation that modify coupling coefficients. Applying this method to the position control system using DC servo motor as a driver, we verify the usefulness of this method with simulation.

  • PDF

Implementation of Fuzzy Controller Applicating Load influence (부하의 영향에 적응하는 퍼지 제어기 구현)

  • Kim, Jae-Wook;Jung, Young-Chang;Hong, Chul-Ho;Chang, Chul-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.632-634
    • /
    • 1998
  • This paper presents experimental results of the fuzzy controller for DC servo motor. The fuzzy controller consists of 9 quantized levels and 25 fuzzy rules. The fine Controller is employed in the fine control mode when the value of error is between -0.03 and +0.03, whereas the coarse controller is used in the coarse control mode when the value of error is in the outside range of -0.03 and +0.03. The experimental results show that the fuzzy controller provides a better performance (lower overshoot and error) than the PID controller regardless of the load applied.

  • PDF